Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video survei...Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification.The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention.Human action recognition(HAR)is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level.The advancements of the DL models help to accomplish improved recognition performance.In this view,this paper presents a smart deep-based human behavior classification(SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering(AMF)based pre-processing to reduce the noise content.Also,the capsule network(CapsNet)model is utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet model takes place utilizing the Adam optimizer.Finally,the differential evolution(DE)with stacked autoencoder(SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The performance validation of the SDL-HBC technique takes place using two benchmark datasets such as the KTH dataset.The experimental outcomes reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches with maximum accuracy of 0.9922.展开更多
Cyber-attacks on cyber-physical systems(CPSs)resulted to sensing and actuation misbehavior,severe damage to physical object,and safety risk.Machine learning(ML)models have been presented to hinder cyberattacks on the ...Cyber-attacks on cyber-physical systems(CPSs)resulted to sensing and actuation misbehavior,severe damage to physical object,and safety risk.Machine learning(ML)models have been presented to hinder cyberattacks on the CPS environment;however,the non-existence of labelled data from new attacks makes their detection quite interesting.Intrusion Detection System(IDS)is a commonly utilized to detect and classify the existence of intrusions in the CPS environment,which acts as an important part in secure CPS environment.Latest developments in deep learning(DL)and explainable artificial intelligence(XAI)stimulate new IDSs to manage cyberattacks with minimum complexity and high sophistication.In this aspect,this paper presents an XAI based IDS using feature selection with Dirichlet Variational Autoencoder(XAIIDS-FSDVAE)model for CPS.The proposed model encompasses the design of coyote optimization algorithm(COA)based feature selection(FS)model is derived to select an optimal subset of features.Next,an intelligent Dirichlet Variational Autoencoder(DVAE)technique is employed for the anomaly detection process in the CPS environment.Finally,the parameter optimization of the DVAE takes place using a manta ray foraging optimization(MRFO)model to tune the parameter of the DVAE.In order to determine the enhanced intrusion detection efficiency of the XAIIDS-FSDVAE technique,a wide range of simulations take place using the benchmark datasets.The experimental results reported the better performance of the XAIIDSFSDVAE technique over the recent methods in terms of several evaluation parameters.展开更多
Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed i...Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed in the literature for the effective detection of diseases.This paper presents a fusion of handcrafted with deep features based tongue color image analysis(FHDF-TCIA)technique to biomedical applications.The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model,and thereby determines the existence of disease.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)withMobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network(PO-QNN)based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique reported the higher accuracy of 0.992.展开更多
Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On th...Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On the other hand,the automatic identification of vehicle license plate(LP)character becomes an essential process to recognize vehicles in real time scenarios,which can be achieved by the exploitation of optimal deep learning(DL)approaches.In this article,a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition(HMODL-ALPCR)technique has been presented for smart city environments.The major intention of the HMODL-ALPCR technique is to detect LPs and recognize the characters that exist in them.For effective LP detection process,mask regional convolutional neural network(Mask-RCNN)model is applied and the Inception with Residual Network(ResNet)-v2 as the baseline network.In addition,hybrid sunflower optimization with butterfly optimization algorithm(HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally,Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique over the recent methods.展开更多
Biometric verification has become essential to authenticate the individuals in public and private places.Among several biometrics,iris has peculiar features and its working mechanism is complex in nature.The recent de...Biometric verification has become essential to authenticate the individuals in public and private places.Among several biometrics,iris has peculiar features and its working mechanism is complex in nature.The recent developments in Machine Learning and Deep Learning approaches enable the development of effective iris recognition models.With this motivation,the current study introduces a novel Chaotic Krill Herd with Deep Transfer Learning Based Biometric Iris Recognition System(CKHDTL-BIRS).The presented CKHDTL-BIRS model intends to recognize and classify iris images as a part of biometric verification.To achieve this,CKHDTL-BIRS model initially performs Median Filtering(MF)-based preprocessing and segmentation for iris localization.In addition,MobileNetmodel is also utilized to generate a set of useful feature vectors.Moreover,Stacked Sparse Autoencoder(SSAE)approach is applied for classification.At last,CKH algorithm is exploited for optimization of the parameters involved in SSAE technique.The proposed CKHDTL-BIRS model was experimentally validated using benchmark dataset and the outcomes were examined under several aspects.The comparison study results established the enhanced performance of CKHDTL-BIRS technique over recent approaches.展开更多
Diabetic Retinopathy(DR)has become a widespread illness among diabetics across the globe.Retinal fundus images are generally used by physicians to detect and classify the stages of DR.Since manual examination of DR im...Diabetic Retinopathy(DR)has become a widespread illness among diabetics across the globe.Retinal fundus images are generally used by physicians to detect and classify the stages of DR.Since manual examination of DR images is a time-consuming process with the risks of biased results,automated tools using Artificial Intelligence(AI)to diagnose the disease have become essential.In this view,the current study develops an Optimal Deep Learning-enabled Fusion-based Diabetic Retinopathy Detection and Classification(ODL-FDRDC)technique.The intention of the proposed ODLFDRDC technique is to identify DR and categorize its different grades using retinal fundus images.In addition,ODL-FDRDC technique involves region growing segmentation technique to determine the infected regions.Moreover,the fusion of two DL models namely,CapsNet and MobileNet is used for feature extraction.Further,the hyperparameter tuning of these models is also performed via Coyote Optimization Algorithm(COA).Gated Recurrent Unit(GRU)is also utilized to identify DR.The experimental results of the analysis,accomplished by ODL-FDRDC technique against benchmark DR dataset,established the supremacy of the technique over existing methodologies under different measures.展开更多
Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated c...Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated cervical cancer diagnosis using automated methods are necessary.This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis(ODLIM-CCD)using pap smear images.The proposed ODLIM-CCD technique incorporates median filtering(MF)based pre-processing to discard the noise and Otsu model based segmentation process.Besides,deep convolutional neural network(DCNN)based Inception with Residual Network(ResNet)v2 model is utilized for deriving the feature vectors.Moreover,swallow swarm optimization(SSO)based hyperparameter tuning process is carried out for the optimal selection of hyperparameters.Finally,recurrent neural network(RNN)based classification process is done to determine the presence of cervical cancer or not.In order to showcase the improved diagnostic performance of the ODLIM-CCD technique,a series of simulations occur on benchmark test images and the outcomes highlighted the improved performance over the recent approaches with a superior accuracy of 0.9661.展开更多
In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natur...In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natural language processing(NLP),and computational linguistics(CL)find useful in the analysis of regional low resource languages.Automatic lexical task participation might be elaborated to various applications in the NLP.It is apparent from the availability of effective machine recognition models and open access handwritten databases.Arabic language is a commonly spoken Semitic language,and it is written with the cursive Arabic alphabet from right to left.Arabic handwritten Character Recognition(HCR)is a crucial process in optical character recognition.In this view,this paper presents effective Computational linguistics with Deep Learning based Handwriting Recognition and Speech Synthesizer(CLDL-THRSS)for Indigenous Language.The presented CLDL-THRSS model involves two stages of operations namely automated handwriting recognition and speech recognition.Firstly,the automated handwriting recognition procedure involves preprocessing,segmentation,feature extraction,and classification.Also,the Capsule Network(CapsNet)based feature extractor is employed for the recognition of handwritten Arabic characters.For optimal hyperparameter tuning,the cuckoo search(CS)optimization technique was included to tune the parameters of the CapsNet method.Besides,deep neural network with hidden Markov model(DNN-HMM)model is employed for the automatic speech synthesizer.To validate the effective performance of the proposed CLDL-THRSS model,a detailed experimental validation process takes place and investigates the outcomes interms of different measures.The experimental outcomes denoted that the CLDL-THRSS technique has demonstrated the compared methods.展开更多
文摘Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification.The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention.Human action recognition(HAR)is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level.The advancements of the DL models help to accomplish improved recognition performance.In this view,this paper presents a smart deep-based human behavior classification(SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering(AMF)based pre-processing to reduce the noise content.Also,the capsule network(CapsNet)model is utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet model takes place utilizing the Adam optimizer.Finally,the differential evolution(DE)with stacked autoencoder(SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The performance validation of the SDL-HBC technique takes place using two benchmark datasets such as the KTH dataset.The experimental outcomes reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches with maximum accuracy of 0.9922.
文摘Cyber-attacks on cyber-physical systems(CPSs)resulted to sensing and actuation misbehavior,severe damage to physical object,and safety risk.Machine learning(ML)models have been presented to hinder cyberattacks on the CPS environment;however,the non-existence of labelled data from new attacks makes their detection quite interesting.Intrusion Detection System(IDS)is a commonly utilized to detect and classify the existence of intrusions in the CPS environment,which acts as an important part in secure CPS environment.Latest developments in deep learning(DL)and explainable artificial intelligence(XAI)stimulate new IDSs to manage cyberattacks with minimum complexity and high sophistication.In this aspect,this paper presents an XAI based IDS using feature selection with Dirichlet Variational Autoencoder(XAIIDS-FSDVAE)model for CPS.The proposed model encompasses the design of coyote optimization algorithm(COA)based feature selection(FS)model is derived to select an optimal subset of features.Next,an intelligent Dirichlet Variational Autoencoder(DVAE)technique is employed for the anomaly detection process in the CPS environment.Finally,the parameter optimization of the DVAE takes place using a manta ray foraging optimization(MRFO)model to tune the parameter of the DVAE.In order to determine the enhanced intrusion detection efficiency of the XAIIDS-FSDVAE technique,a wide range of simulations take place using the benchmark datasets.The experimental results reported the better performance of the XAIIDSFSDVAE technique over the recent methods in terms of several evaluation parameters.
基金This Research was funded by the Deanship of Scientific Research at University of Business and Technology,Saudi Arabia.
文摘Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed in the literature for the effective detection of diseases.This paper presents a fusion of handcrafted with deep features based tongue color image analysis(FHDF-TCIA)technique to biomedical applications.The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model,and thereby determines the existence of disease.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)withMobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network(PO-QNN)based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique reported the higher accuracy of 0.992.
文摘Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On the other hand,the automatic identification of vehicle license plate(LP)character becomes an essential process to recognize vehicles in real time scenarios,which can be achieved by the exploitation of optimal deep learning(DL)approaches.In this article,a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition(HMODL-ALPCR)technique has been presented for smart city environments.The major intention of the HMODL-ALPCR technique is to detect LPs and recognize the characters that exist in them.For effective LP detection process,mask regional convolutional neural network(Mask-RCNN)model is applied and the Inception with Residual Network(ResNet)-v2 as the baseline network.In addition,hybrid sunflower optimization with butterfly optimization algorithm(HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally,Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique over the recent methods.
文摘Biometric verification has become essential to authenticate the individuals in public and private places.Among several biometrics,iris has peculiar features and its working mechanism is complex in nature.The recent developments in Machine Learning and Deep Learning approaches enable the development of effective iris recognition models.With this motivation,the current study introduces a novel Chaotic Krill Herd with Deep Transfer Learning Based Biometric Iris Recognition System(CKHDTL-BIRS).The presented CKHDTL-BIRS model intends to recognize and classify iris images as a part of biometric verification.To achieve this,CKHDTL-BIRS model initially performs Median Filtering(MF)-based preprocessing and segmentation for iris localization.In addition,MobileNetmodel is also utilized to generate a set of useful feature vectors.Moreover,Stacked Sparse Autoencoder(SSAE)approach is applied for classification.At last,CKH algorithm is exploited for optimization of the parameters involved in SSAE technique.The proposed CKHDTL-BIRS model was experimentally validated using benchmark dataset and the outcomes were examined under several aspects.The comparison study results established the enhanced performance of CKHDTL-BIRS technique over recent approaches.
文摘Diabetic Retinopathy(DR)has become a widespread illness among diabetics across the globe.Retinal fundus images are generally used by physicians to detect and classify the stages of DR.Since manual examination of DR images is a time-consuming process with the risks of biased results,automated tools using Artificial Intelligence(AI)to diagnose the disease have become essential.In this view,the current study develops an Optimal Deep Learning-enabled Fusion-based Diabetic Retinopathy Detection and Classification(ODL-FDRDC)technique.The intention of the proposed ODLFDRDC technique is to identify DR and categorize its different grades using retinal fundus images.In addition,ODL-FDRDC technique involves region growing segmentation technique to determine the infected regions.Moreover,the fusion of two DL models namely,CapsNet and MobileNet is used for feature extraction.Further,the hyperparameter tuning of these models is also performed via Coyote Optimization Algorithm(COA).Gated Recurrent Unit(GRU)is also utilized to identify DR.The experimental results of the analysis,accomplished by ODL-FDRDC technique against benchmark DR dataset,established the supremacy of the technique over existing methodologies under different measures.
文摘Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated cervical cancer diagnosis using automated methods are necessary.This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis(ODLIM-CCD)using pap smear images.The proposed ODLIM-CCD technique incorporates median filtering(MF)based pre-processing to discard the noise and Otsu model based segmentation process.Besides,deep convolutional neural network(DCNN)based Inception with Residual Network(ResNet)v2 model is utilized for deriving the feature vectors.Moreover,swallow swarm optimization(SSO)based hyperparameter tuning process is carried out for the optimal selection of hyperparameters.Finally,recurrent neural network(RNN)based classification process is done to determine the presence of cervical cancer or not.In order to showcase the improved diagnostic performance of the ODLIM-CCD technique,a series of simulations occur on benchmark test images and the outcomes highlighted the improved performance over the recent approaches with a superior accuracy of 0.9661.
文摘In recent years,researchers in handwriting recognition analysis relating to indigenous languages have gained significant internet among research communities.The recent developments of artificial intelligence(AI),natural language processing(NLP),and computational linguistics(CL)find useful in the analysis of regional low resource languages.Automatic lexical task participation might be elaborated to various applications in the NLP.It is apparent from the availability of effective machine recognition models and open access handwritten databases.Arabic language is a commonly spoken Semitic language,and it is written with the cursive Arabic alphabet from right to left.Arabic handwritten Character Recognition(HCR)is a crucial process in optical character recognition.In this view,this paper presents effective Computational linguistics with Deep Learning based Handwriting Recognition and Speech Synthesizer(CLDL-THRSS)for Indigenous Language.The presented CLDL-THRSS model involves two stages of operations namely automated handwriting recognition and speech recognition.Firstly,the automated handwriting recognition procedure involves preprocessing,segmentation,feature extraction,and classification.Also,the Capsule Network(CapsNet)based feature extractor is employed for the recognition of handwritten Arabic characters.For optimal hyperparameter tuning,the cuckoo search(CS)optimization technique was included to tune the parameters of the CapsNet method.Besides,deep neural network with hidden Markov model(DNN-HMM)model is employed for the automatic speech synthesizer.To validate the effective performance of the proposed CLDL-THRSS model,a detailed experimental validation process takes place and investigates the outcomes interms of different measures.The experimental outcomes denoted that the CLDL-THRSS technique has demonstrated the compared methods.