ntergranular slow crack growth in zirconia polycrystal is described with a cohesive zone model that simulate mechanically the reaction-rupture mechanism underlying stress and environ- mentally assisted failure. A 2D p...ntergranular slow crack growth in zirconia polycrystal is described with a cohesive zone model that simulate mechanically the reaction-rupture mechanism underlying stress and environ- mentally assisted failure. A 2D polycrystal is considered with cohesive surfaces inserted along the grain boundaries. The anisotropic elastic modulus and grain-to-grain misorientation are accounted for together with an initial stress state related to the processing. A minimum load threshold is shown to originate from the onset of the reaction-rupture mechanism to proceed where a minimum traction is reached locally and from the magnitude of the initial compression stresses. This work aims at providing reliable predictions in long lasting applications of ceramics.展开更多
文摘ntergranular slow crack growth in zirconia polycrystal is described with a cohesive zone model that simulate mechanically the reaction-rupture mechanism underlying stress and environ- mentally assisted failure. A 2D polycrystal is considered with cohesive surfaces inserted along the grain boundaries. The anisotropic elastic modulus and grain-to-grain misorientation are accounted for together with an initial stress state related to the processing. A minimum load threshold is shown to originate from the onset of the reaction-rupture mechanism to proceed where a minimum traction is reached locally and from the magnitude of the initial compression stresses. This work aims at providing reliable predictions in long lasting applications of ceramics.