The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was ...The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide(ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO_3)_3H_2 O and SnCl_4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25–35 nm size ITO nanoparticles, containing only the crystallized In_2O_3 phase. The synthesized ITO nanoparticles–graphene hybrid exhibited very good and reproducible optical transparency in the visible range(more than 85%) and a28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2 D peaks were redshifted by 5.65, 5.69, and 9.74 cm^(-1),respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene.展开更多
基金supported by the Basic Science Research Program of the National Research Foundation(NRF)of Koreafunded by the Ministry of Education(NRF-2014R1A6A1030419 and NRF-2015R1D1A1A01061005)
文摘The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide(ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO_3)_3H_2 O and SnCl_4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25–35 nm size ITO nanoparticles, containing only the crystallized In_2O_3 phase. The synthesized ITO nanoparticles–graphene hybrid exhibited very good and reproducible optical transparency in the visible range(more than 85%) and a28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2 D peaks were redshifted by 5.65, 5.69, and 9.74 cm^(-1),respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene.