This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
Projecting future changes of streamflow in the Abby River Basin (ARB) is important for planning and proper management of the basin system. The current study conducted in five stations of the Abbay river basin, and inv...Projecting future changes of streamflow in the Abby River Basin (ARB) is important for planning and proper management of the basin system. The current study conducted in five stations of the Abbay river basin, and investigated the annual temperature, precipitation, and river discharge variability using the Innovative trend analysis method, Mann-Kendall, and Sen’s slope test estimator. The result showed a slightly increasing trend of annual precipitation in Assoa (Z = 0.71), Bahir Dar (Z = 0.13), and Gonder (Z = 0.26) stations, while a significant increasing trend was observed in Nedgo (Z = 2.45) and Motta (Z = 1.06) stations. Interestingly, the trend of annual temperature in Assosa (Z = 5.88), Bahir Dar (Z = 3.87), Gonder (Z = 4.38), Nedgo (Z = 4.77), and Motta (Z = 2.85) was abruptly increased. The average mean temperature has increased by 0.2°C in the past 36 years (1980 to 2016). The extreme high temperature was observed in the semi-dry zone of northern Ethiopia. During the study period, a significant declining trend of the river discharge was recorded, and the river discharge was sharply decreased from 1992 onwards. The results of the current study showed annual variability of river discharge, precipitation, and temperature of the study area of the basin that could be used as a basis for future studies.展开更多
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
文摘Projecting future changes of streamflow in the Abby River Basin (ARB) is important for planning and proper management of the basin system. The current study conducted in five stations of the Abbay river basin, and investigated the annual temperature, precipitation, and river discharge variability using the Innovative trend analysis method, Mann-Kendall, and Sen’s slope test estimator. The result showed a slightly increasing trend of annual precipitation in Assoa (Z = 0.71), Bahir Dar (Z = 0.13), and Gonder (Z = 0.26) stations, while a significant increasing trend was observed in Nedgo (Z = 2.45) and Motta (Z = 1.06) stations. Interestingly, the trend of annual temperature in Assosa (Z = 5.88), Bahir Dar (Z = 3.87), Gonder (Z = 4.38), Nedgo (Z = 4.77), and Motta (Z = 2.85) was abruptly increased. The average mean temperature has increased by 0.2°C in the past 36 years (1980 to 2016). The extreme high temperature was observed in the semi-dry zone of northern Ethiopia. During the study period, a significant declining trend of the river discharge was recorded, and the river discharge was sharply decreased from 1992 onwards. The results of the current study showed annual variability of river discharge, precipitation, and temperature of the study area of the basin that could be used as a basis for future studies.