MicroRNAs(miRNAs),as the small,non-coding,evolutionary conserved,and post-transcriptional gene regulators of the genome,have been highly associated with various diseases such as cancers,viral infections,and cardiovasc...MicroRNAs(miRNAs),as the small,non-coding,evolutionary conserved,and post-transcriptional gene regulators of the genome,have been highly associated with various diseases such as cancers,viral infections,and cardiovascular diseases.Several techniques have been established to detect miRNAs,including northern blotting,real-time polymerase chain reaction(RT-PCR),and fluorescent microarray platform.However,it remains a significant challenge to develop sensitive,accurate,rapid,and cost-effective methods to detect miRNAs due to their short size,high similarity,and low abundance.The electro-chemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration,portability,mass production,short response time,and minimal sample consumption.This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements.With the develop-ment of DNA nanotechnology,nanomaterials and biotechnology,electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.展开更多
基金We gratefully thank the financial support from Shanghai Municipal Science and Technology Project(18430760500 and 2017SHZDZX01)Shanghai Municipal Education Commission Project(ZXWF082101)+1 种基金Shanghai Jiao Tong University Projects(YG2021ZD19,Agri-X20200101,SL2020MS026,19X190020154,ZH2018ZDA01,YG2016QN24,YG2016MS60,2020 SJTU-HUJI,2019 SJTU-Usyd,SD0820016)Shanghai Municipal Health Commission Project(2019CXJQ03),Shanghai Clinical Medical Research Center Project(19MC1910800).
文摘MicroRNAs(miRNAs),as the small,non-coding,evolutionary conserved,and post-transcriptional gene regulators of the genome,have been highly associated with various diseases such as cancers,viral infections,and cardiovascular diseases.Several techniques have been established to detect miRNAs,including northern blotting,real-time polymerase chain reaction(RT-PCR),and fluorescent microarray platform.However,it remains a significant challenge to develop sensitive,accurate,rapid,and cost-effective methods to detect miRNAs due to their short size,high similarity,and low abundance.The electro-chemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration,portability,mass production,short response time,and minimal sample consumption.This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements.With the develop-ment of DNA nanotechnology,nanomaterials and biotechnology,electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.