Blanking is one of the high speed processes to produce fiat products from sheets economically. In order to expand this process to new materials, the blanking of polyvinyl chloride (PVC)/fiberglass thermoplastic com-...Blanking is one of the high speed processes to produce fiat products from sheets economically. In order to expand this process to new materials, the blanking of polyvinyl chloride (PVC)/fiberglass thermoplastic com- posite laminates and composite/aluminum hybrid laminates was investigated. The laminates were produced by the film stacking procedure and then blanked by circular die and punches. The blanking process was done in two levels of clearance including 4% and 8% of the laminates thickness, two levels of punch speed including 40 mm/min and 200 mm/min and at two levels of temperature (room tem- perature and 80 ℃) for both composite and hybrid laminates. The effects of the parameters on the maximum blanking force, cutting energy, and quality and precision of sheared edges were studied. Cutting mechanism for blanking in different conditions was explained. It was concluded that at room temperature, blanked composite and hybrid laminates had a high quality of sheared edges but at elevated temperature, although the maximum blanking force was reduced, the quality of sheared edge was reduced significantly.展开更多
文摘Blanking is one of the high speed processes to produce fiat products from sheets economically. In order to expand this process to new materials, the blanking of polyvinyl chloride (PVC)/fiberglass thermoplastic com- posite laminates and composite/aluminum hybrid laminates was investigated. The laminates were produced by the film stacking procedure and then blanked by circular die and punches. The blanking process was done in two levels of clearance including 4% and 8% of the laminates thickness, two levels of punch speed including 40 mm/min and 200 mm/min and at two levels of temperature (room tem- perature and 80 ℃) for both composite and hybrid laminates. The effects of the parameters on the maximum blanking force, cutting energy, and quality and precision of sheared edges were studied. Cutting mechanism for blanking in different conditions was explained. It was concluded that at room temperature, blanked composite and hybrid laminates had a high quality of sheared edges but at elevated temperature, although the maximum blanking force was reduced, the quality of sheared edge was reduced significantly.