期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors 被引量:3
1
作者 Zhi Li Kaveh Ahadi +5 位作者 Keren Jiang behzad ahvazi Peng Li Anthony O. Anyia Ken Cadien Thomas Thundat 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1847-1860,共14页
Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hy... Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) A1203 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g-1. The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg·cm-2 for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F·g-1 and extraordinary performance at high current densities. Even at a very high current of 50 A-g-l, it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications. 展开更多
关键词 NANOCELLULOSE SUPERCAPACITORS hierarchical structure atomic layer deposition(ALD) integrated structure
原文传递
Sorption of 2,4-dinitroanisole (DNAN) on lignin
2
作者 Rabih Saad Zorana Radovic-Hrapovic +3 位作者 behzad ahvazi Sonia Thiboutot Guy Ampleman Jalal Hawari 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期808-813,共6页
The present study describes the use of two commercially available lignins,namely,alkali and organosolv lignin,for the removal of2,4-dinitroanisole(DNAN),a chemical widely used by the military and the dye industry,fr... The present study describes the use of two commercially available lignins,namely,alkali and organosolv lignin,for the removal of2,4-dinitroanisole(DNAN),a chemical widely used by the military and the dye industry,from water.Sorption of DNAN on bothlignins reached equilibrium within 10 hr and followed pseudo second-order kinetics with sorption being faster with alkali than withorganosolv lignin,i.e.k2 10.3 and 0.3 g/(mg·hr),respectively.In a separate study we investigated sorption of DNAN between 10 and40 C and found that the removal of DNAN by organosolv lignin increased from 0.8 to 7.5 mg/g but reduced slightly from 8.5 to 7.6mg/g in the case of alkali lignin.Sorption isotherms for either alkali or organosolv lignin best fitted Freundlich equation with enthalpyof formation,H0 equaled to 14 or 80 kJ/mol.To help understand DNAN sorption mechanisms we characterized the two lignins byelemental analysis,BET nitrogen adsorption-desorption and 31P NMR.Variations in elemental compositions between the two ligninsindicated that alkali lignin should have more sites(O-and S-containing functionalities) for H-bonding.The BET surface area andcalculated total pore volume of alkali lignin were almost 10 times greater than that of organosolv lignin suggesting that alkali ligninshould provide more sites for sorption.31P NMR showed that organosolv lignin contains more phenolic-OH groups than alkali lignin,i.e.,70% and 45%,respectively.The variations in the type of OH groups between the two lignins might have affected the strength ofH-bonding between DNAN and the type of lignin used. 展开更多
关键词 sorption DNAN lignin kinetics isotherms.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部