The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi...The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.展开更多
Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furt...Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.展开更多
基金Supported by the National Natural Science Foundation of China(21473048,21303039)the Natural Science Foundation of Hebei Province(B2016205161,B2015205163)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.
基金Project supported by the National Natural Science Foundation of China(21473048 and 21303039)the Natural Science Foundation of Hebei Province(B2015205163,B2016205161)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.