Objective:Currently,there is an urgent need to identify immunotherapeutic biomarkers to increase the benefit of immune checkpoint inhibitors(ICIs)for patients with gastric cancer(GC).Homologous recombination deficienc...Objective:Currently,there is an urgent need to identify immunotherapeutic biomarkers to increase the benefit of immune checkpoint inhibitors(ICIs)for patients with gastric cancer(GC).Homologous recombination deficiency(HRD)can modify the tumor immune microenvironment by increasing the presence of tumor-infiltrating lymphocytes and therefore might serve as a biomarker of immunotherapeutic response.We aimed to analyze the mutational pattern of HR-associated genes in Chinese patients with GC and its relevance to the tumor immune profile and clinical immunotherapeutic response.Methods:A panel of 543 cancer-associated genes was used to analyze genomic profiles in a cohort comprising 484 Chinese patients with GC.Correlations between HR gene mutations and tumor immunity or clinical outcomes were identified via bioinformatic analysis using 2 GC genomic datasets(TCGA and MSK-IMPACT).Results:Fifty-one of the 484(10.54%)patients carried at least one somatic mutation in an HR gene;ATM(16/484,3.31%)was among the most frequently mutated HR genes in the Chinese cohort.Mutations in HR genes were associated with elevated tumor mutational burden,enhanced immune activity,and microsatellite instability status.In the MSK-IMPACT cohort comprising 49 patients with stomach adenocarcinoma or gastroesophageal junction adenocarcinoma treated with ICIs,patients with HR-mut GC(n=12)had significantly better overall survival than those with HR-wt GC(n=37)(log-rank test,P<0.05).Conclusions:Our data suggest that detection of somatic mutations in HR genes might aid in identifying patients who might benefit from immune checkpoint blockade therapy.展开更多
Organic electrosynthesis as an emerging green and advantageous alternative to traditional synthetic methods has achieved remarkable progress in recent years because sustainable electricity can be employed as traceless...Organic electrosynthesis as an emerging green and advantageous alternative to traditional synthetic methods has achieved remarkable progress in recent years because sustainable electricity can be employed as traceless redox agents. To surmount the over-oxidation/reduction issues of direct electrolysis,mediated or indirect electrochemical processes are attaining remarkable significance and promoting the selectivity of products. Molecular electrocatalysts, benefiting from the easily electronic and steric modulation, suffers from readily degradation issue in most cases. Remarkably, heterogeneous catalysts have drawn more attention due to their high activity, stability, and recyclability. Hence, in this review, the most recent growth of heterogeneous catalysts modified electrodes for organic electrosynthesis were summarized, highlighting structural optimization and electrochemical performance of these materials as well as reaction mechanism. Furthermore, key challenges and future directions in this area were also discussed.展开更多
The mammalian target of rapamycin(mTOR) is a critical component of the PI3K-AKT signaling pathway. It is highly activated in cervical cancer, which continues to pose an important clinical challenge with an urgent need...The mammalian target of rapamycin(mTOR) is a critical component of the PI3K-AKT signaling pathway. It is highly activated in cervical cancer, which continues to pose an important clinical challenge with an urgent need for new and improved therapeutic approaches. Herein, we describe the structure-based drug discovery and biological evaluation of a series of m TOR kinase inhibitors as potential anti-cervical cancer agents. The results of enzymatic activity assays supported C3 as a potential m TOR inhibitor, which exhibited high inhibitory activity with an IC50 of 1.57 μM. Molecular docking and dynamics simulation were conducted to predict the binding patterns, suggesting relationships between structure and activity. The anti-proliferative assay against diverse cancer cell lines was displayed subsequently, revealing that C3 exhibited significant proliferation inhibition against cervical cancer cell He La(IC50=0.38μM) compared with other cell lines. Moreover, C3 could effectively reduce the expression of phospho-ribosomal S6 protein(p-S6) in He La cells in a dose-dependent manner. Noteworthily, m TOR signaling and other cellular pathways might contribute to the significant effect of C3 against cervical cancer simultaneously. These data indicated that C3 represented a good lead molecule for further development as a therapeutic agent for cervical cancer treatment.展开更多
Dear Editor,Gastric cancer(GC)is a leading cause of cancer-related deaths worldwide,especially in China and other East Asian countries[1,2].Although considerable achievements have been made in its treatment[3]and pred...Dear Editor,Gastric cancer(GC)is a leading cause of cancer-related deaths worldwide,especially in China and other East Asian countries[1,2].Although considerable achievements have been made in its treatment[3]and predictive biomarkers[4]in past decades,the prognosis of GC remains poor[5].Therefore,more effective prognostic markers are needed to improve the prognosis prediction of GCs.Small panels based on next-generation sequencing,such as FoundationOne CDx and MSK-IMPACT,are widely used for selecting appropriate treatment approaches(such as targeted therapies,immunotherapies,and chemotherapies)with the advantages of a higher sequencing depth and more cost-effectiveness than whole-exome sequencing(WES).Previous studies have demonstrated that molecular characteristics based on the designed cancer-related gene panel were consistent with those determined by WES and could be prognostic markers for various cancer types[6-8].As such,we analyzed the molecular features with the designed panel to investigate probable prognostic biomarkers for Chinese patients with GC.展开更多
基金supported by the Youth Fund Project of NSFC(Grant No.81403242)Development Project of Shanghai Peak Disciplines Integrative Medicine(Grant No.20180101)。
文摘Objective:Currently,there is an urgent need to identify immunotherapeutic biomarkers to increase the benefit of immune checkpoint inhibitors(ICIs)for patients with gastric cancer(GC).Homologous recombination deficiency(HRD)can modify the tumor immune microenvironment by increasing the presence of tumor-infiltrating lymphocytes and therefore might serve as a biomarker of immunotherapeutic response.We aimed to analyze the mutational pattern of HR-associated genes in Chinese patients with GC and its relevance to the tumor immune profile and clinical immunotherapeutic response.Methods:A panel of 543 cancer-associated genes was used to analyze genomic profiles in a cohort comprising 484 Chinese patients with GC.Correlations between HR gene mutations and tumor immunity or clinical outcomes were identified via bioinformatic analysis using 2 GC genomic datasets(TCGA and MSK-IMPACT).Results:Fifty-one of the 484(10.54%)patients carried at least one somatic mutation in an HR gene;ATM(16/484,3.31%)was among the most frequently mutated HR genes in the Chinese cohort.Mutations in HR genes were associated with elevated tumor mutational burden,enhanced immune activity,and microsatellite instability status.In the MSK-IMPACT cohort comprising 49 patients with stomach adenocarcinoma or gastroesophageal junction adenocarcinoma treated with ICIs,patients with HR-mut GC(n=12)had significantly better overall survival than those with HR-wt GC(n=37)(log-rank test,P<0.05).Conclusions:Our data suggest that detection of somatic mutations in HR genes might aid in identifying patients who might benefit from immune checkpoint blockade therapy.
基金the financial support from the National Natural Science Foundation of China (No. 22171154)the Youth Innovative Talents Recruitment and Cultivation Program of Shandong Higher Education+2 种基金the Natural Science Foundation of Shandong Province (Nos. ZR^(2)020QB114, ZR^(2)020QB008 and ZR^(2)019BB031)Jinan Science&Technology Bureau (No. 2021GXRC080)The project supported by the Foundation (No. ZZ20190312) of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences)。
文摘Organic electrosynthesis as an emerging green and advantageous alternative to traditional synthetic methods has achieved remarkable progress in recent years because sustainable electricity can be employed as traceless redox agents. To surmount the over-oxidation/reduction issues of direct electrolysis,mediated or indirect electrochemical processes are attaining remarkable significance and promoting the selectivity of products. Molecular electrocatalysts, benefiting from the easily electronic and steric modulation, suffers from readily degradation issue in most cases. Remarkably, heterogeneous catalysts have drawn more attention due to their high activity, stability, and recyclability. Hence, in this review, the most recent growth of heterogeneous catalysts modified electrodes for organic electrosynthesis were summarized, highlighting structural optimization and electrochemical performance of these materials as well as reaction mechanism. Furthermore, key challenges and future directions in this area were also discussed.
基金National Natural Science Foundation of China(Grant No.21772005,81872730)the Beijing Natural Science Foundation(Grant No.7202088,7172118)。
文摘The mammalian target of rapamycin(mTOR) is a critical component of the PI3K-AKT signaling pathway. It is highly activated in cervical cancer, which continues to pose an important clinical challenge with an urgent need for new and improved therapeutic approaches. Herein, we describe the structure-based drug discovery and biological evaluation of a series of m TOR kinase inhibitors as potential anti-cervical cancer agents. The results of enzymatic activity assays supported C3 as a potential m TOR inhibitor, which exhibited high inhibitory activity with an IC50 of 1.57 μM. Molecular docking and dynamics simulation were conducted to predict the binding patterns, suggesting relationships between structure and activity. The anti-proliferative assay against diverse cancer cell lines was displayed subsequently, revealing that C3 exhibited significant proliferation inhibition against cervical cancer cell He La(IC50=0.38μM) compared with other cell lines. Moreover, C3 could effectively reduce the expression of phospho-ribosomal S6 protein(p-S6) in He La cells in a dose-dependent manner. Noteworthily, m TOR signaling and other cellular pathways might contribute to the significant effect of C3 against cervical cancer simultaneously. These data indicated that C3 represented a good lead molecule for further development as a therapeutic agent for cervical cancer treatment.
基金This work was supported by grant from the National Key Sci-Tech Special Project of China[No.2018ZX 10302207].
文摘Dear Editor,Gastric cancer(GC)is a leading cause of cancer-related deaths worldwide,especially in China and other East Asian countries[1,2].Although considerable achievements have been made in its treatment[3]and predictive biomarkers[4]in past decades,the prognosis of GC remains poor[5].Therefore,more effective prognostic markers are needed to improve the prognosis prediction of GCs.Small panels based on next-generation sequencing,such as FoundationOne CDx and MSK-IMPACT,are widely used for selecting appropriate treatment approaches(such as targeted therapies,immunotherapies,and chemotherapies)with the advantages of a higher sequencing depth and more cost-effectiveness than whole-exome sequencing(WES).Previous studies have demonstrated that molecular characteristics based on the designed cancer-related gene panel were consistent with those determined by WES and could be prognostic markers for various cancer types[6-8].As such,we analyzed the molecular features with the designed panel to investigate probable prognostic biomarkers for Chinese patients with GC.