期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genome-wide profiling of histone H3 lysine 27 trimethylation and its modification in response to chilling stress in grapevine leaves 被引量:1
1
作者 Zhenfei Zhu Qingyun Li +11 位作者 Duncan Kiragu Gichuki Yujun Hou Yuanshuang Liu Huimin Zhou Chen Xu Linchuan Fang Linzhong Gong beibei zheng Wei Duan Peige Fan Qingfeng Wang Haiping Xin 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期496-508,共13页
Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K2... Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K27 chromatin immunoprecipitation(ChIP), high-throughput sequencing, and transcriptome analysis were performed using leaves of Vitis amurensis. The leaves were treated at 4°C for 2 h and 24 h and used to investigate changes in H3K27me3 under chilling treatment. The results show that H3K27me3 is well-distributed both in gene regions(-50%) and in the intergenic region(-50%) in the grapevine genome(Vitis vinifera ‘Pinot Noir PN40024'). H3K27me3 was found to be localized in8 368 annotated gene regions in all detected samples(leaves at normal temperature and under chilling treatments) and mainly enriched in gene bodies with the adjacent promoter and downstream areas. The short-term chilling treatments(4°C for 2 h) induced 2 793 gains and 305losses in H3K27me3 modification. Subsequently, 97.3% of the alterations were restored to original levels after 24 h treatment. The ChIP-qPCR for five differential peaks showed similar results to the data for ChIP-seq, indicating that the chilling-induced H3K27me3 modification is reliable.Integrative analysis of transcriptome and ChIP-seq results showed that the expression of H3K27me3 target genes was significantly lower than those of non-target genes, indicating transcriptional repression of H3K27me3 in grapevine leaves. Furthermore, histone methylation alterations were detected in 82 genes and were related to either repression or activation of their expression during chilling stress. The findings provide the genome-wide H3K27me3 patterns in grapevines and shed light on uncovering its regulation in chilling stress responses. 展开更多
关键词 Vitis amurensis Histone modification H3K27me3 Chilling stress
下载PDF
PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach 被引量:1
2
作者 Xiaomei Chen Yudi Liu +3 位作者 Xian Zhang beibei zheng Yuepeng Han Ruo-Xi Zhang 《Horticulture Research》 SCIE CSCD 2023年第9期151-164,共14页
Although auxin is known to induce ethylene biosynthesis in some Rosaceae fruit crops,the mechanisms underlying the auxin–ethylene interaction during fruit ripening remain largely unknown.Here,the regulatory role of a... Although auxin is known to induce ethylene biosynthesis in some Rosaceae fruit crops,the mechanisms underlying the auxin–ethylene interaction during fruit ripening remain largely unknown.Here,the regulatory role of an auxin response factor,PpARF6,in fruit ripening was investigated in peach.Peach fruits showed accelerated ripening after treatment with auxin and PpARF6 was found to be significantly induced.PpARF6 not only could induce ethylene synthesis by directly activating the transcription of ethylene biosynthetic genes,but also competed with EIN3-binding F-box proteins PpEBF1/2 for binding to ethylene-insensitive3-like proteins PpEIL2/3,thereby keeping PpEIL2/3 active.Moreover,PpARF6 showed an interaction with PpEIL2/3 to enhance the PpEIL2/3-activated transcription of ethylene biosynthetic genes.Additionally,ectopic overexpression of PpARF6 in tomato accelerated fruit ripening by promoting the expression of genes involved in ethylene synthesis and fruit texture.In summary,our results revealed a positive regulatory role of PpARF6 in peach fruit ripening via integrating auxin and ethylene signaling. 展开更多
关键词 INTERACTION integrating thereby
下载PDF
Unraveling a genetic roadmap for improved taste in the domesticated apple 被引量:5
3
作者 Liao Liao Weihan Zhang +28 位作者 Bo Zhang Ting Fang Xiao-Fei Wang Yarning Cai Collins Ogutu Lei Gao Gang Chen Xiaoqing Nie Jinsheng Xu Quanyan Zhang Yiran Ren Jianqiang Yu Chukun Wang Cecilia H.Deng Baiquan Ma beibei zheng Chun-Xiang You Da-Gang Hu Richard Espley Kui Lin-Wang Jia-Long Yao Andrew C.Allan Awais Khan Schuyler S.Korban Zhangjun Fei Ray Ming Yu-Jin Hao Li Li Yuepeng Han 《Molecular Plant》 SCIE CAS CSCD 2021年第9期1454-1471,共18页
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus access... Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple. 展开更多
关键词 APPLE fruit taste organic acids soluble sugars fruit size DOMESTICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部