The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunn...The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078304,51938008,52090084,and 52208354)Guangdong Province Key Field R&D Program Project(Grant Nos.2019B111108001 and 2022B0101070001)+1 种基金Shenzhen Fundamental Research(Grant No.20220525163716003)the Pearl River Delta Water Resources Allocation Project(CD88-GC022020-0038).
文摘The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.