The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1%Fe and whose origin remains debatable.The mineralization occurs as NE-SW oriented discontinuous lenti...The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1%Fe and whose origin remains debatable.The mineralization occurs as NE-SW oriented discontinuous lenticular bodies of magnetite-bearing pyroxenegneisses(MPG)hosted by ortho-derived gneisses.Rare amphibolites are observed.The MPG mineral assemblage consists of quartz-magnetite-orthopyroxene-garnet-tremolite/actinolite exhibiting a granoblastic texture,which is characteristic of granulite facies metamorphism.The granodioritic gneisses show compositional features of the tonalite-trondhjemite-granodiorite association.Their trace and REE element geochemistry indicate their protolith melt resulted from the partial melting of a subducted oceanic slab,with interaction with the overlying mantle wedge during ascent.The amphibolites show enrichment in LILE with negative Ta–Nb and Zr–Hf indicating arc-related magmas generated by partial melting of a sub-continental lithospheric mantle source with metasomatism by subduction-related fluids.The MPG exhibits oxidation-exsolution features characterized by ilmenite lamellae,with hematite fracture-fillinginmagnetite,andlacksfeatures characteristic of typical BIF such as LREE depletion relative to HREE,positive Eu,La,and Y anomalies.Based on the results of this study,we interpret the Sanaga MPG as a possible skarn-type mineralization formed by the metamorphism/metasomatism of a possible BIF protolith.The results of this study compare with similar magnetite-rich mineralization in the Sa o Francisco craton in northeastern Brazil and enhance the correlation of pre-drift reconstructions of the Sa o Francisco–Congo Cratons.展开更多
文摘The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1%Fe and whose origin remains debatable.The mineralization occurs as NE-SW oriented discontinuous lenticular bodies of magnetite-bearing pyroxenegneisses(MPG)hosted by ortho-derived gneisses.Rare amphibolites are observed.The MPG mineral assemblage consists of quartz-magnetite-orthopyroxene-garnet-tremolite/actinolite exhibiting a granoblastic texture,which is characteristic of granulite facies metamorphism.The granodioritic gneisses show compositional features of the tonalite-trondhjemite-granodiorite association.Their trace and REE element geochemistry indicate their protolith melt resulted from the partial melting of a subducted oceanic slab,with interaction with the overlying mantle wedge during ascent.The amphibolites show enrichment in LILE with negative Ta–Nb and Zr–Hf indicating arc-related magmas generated by partial melting of a sub-continental lithospheric mantle source with metasomatism by subduction-related fluids.The MPG exhibits oxidation-exsolution features characterized by ilmenite lamellae,with hematite fracture-fillinginmagnetite,andlacksfeatures characteristic of typical BIF such as LREE depletion relative to HREE,positive Eu,La,and Y anomalies.Based on the results of this study,we interpret the Sanaga MPG as a possible skarn-type mineralization formed by the metamorphism/metasomatism of a possible BIF protolith.The results of this study compare with similar magnetite-rich mineralization in the Sa o Francisco craton in northeastern Brazil and enhance the correlation of pre-drift reconstructions of the Sa o Francisco–Congo Cratons.