This paper presents a low-cost remote vision system for use in unmanned aircraft that provide a first person view (FPV) to vehicle operators in real-time. The system does not require a traditional electromechanical ...This paper presents a low-cost remote vision system for use in unmanned aircraft that provide a first person view (FPV) to vehicle operators in real-time. The system does not require a traditional electromechanical gimbal setup. Instead, the system uses a wide-angle (fisheye) lens and a video camera setup that is fixed on the vehicle and captures the full viewing area as seen from the cockpit in each video frame. Video is transmitted to a ground station wirelessly. On the ground, the pilot is outfitted with virtual reality goggles with integrated attitude and heading sensors. The received video is recertified and cropped by the ground station to provide the goggles with the appropriate view based on head orientation. Compared to traditional electromechanical setups, the presented system features reduced weight, reduced video lag, lower power consumption, and reduced drag on the airborne vehicle in addition to requiring only a unidirectional downlink. The video processing is preformed on the ground, further reducing computational resources and bandwidth requirements. These advantages, in conjunction with the advancement in miniature optical sensors and lenses, make the proposed approach a viable option for miniature remotely controlled vehicles. The system was successfully implemented and tested using an R/C airplane.展开更多
文摘This paper presents a low-cost remote vision system for use in unmanned aircraft that provide a first person view (FPV) to vehicle operators in real-time. The system does not require a traditional electromechanical gimbal setup. Instead, the system uses a wide-angle (fisheye) lens and a video camera setup that is fixed on the vehicle and captures the full viewing area as seen from the cockpit in each video frame. Video is transmitted to a ground station wirelessly. On the ground, the pilot is outfitted with virtual reality goggles with integrated attitude and heading sensors. The received video is recertified and cropped by the ground station to provide the goggles with the appropriate view based on head orientation. Compared to traditional electromechanical setups, the presented system features reduced weight, reduced video lag, lower power consumption, and reduced drag on the airborne vehicle in addition to requiring only a unidirectional downlink. The video processing is preformed on the ground, further reducing computational resources and bandwidth requirements. These advantages, in conjunction with the advancement in miniature optical sensors and lenses, make the proposed approach a viable option for miniature remotely controlled vehicles. The system was successfully implemented and tested using an R/C airplane.