期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo_(2)C powder mixtures:A comparative study on microstructure,mechanical and wear performance,and thermal mechanisms
1
作者 Qimin Shi Shoufeng Yang +5 位作者 Yi Sun Yifei Gu ben mercelis Shengping Zhong Bart Van Meerbeek Constantinus Politis 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第20期81-96,共16页
Ti-Mo alloys/composites are expected to be the next-generation implant material with low moduli but without toxic/allergic elements.However,synthesis mechanisms of the Ti-Mo biomaterials in Selective Laser Melting(SLM... Ti-Mo alloys/composites are expected to be the next-generation implant material with low moduli but without toxic/allergic elements.However,synthesis mechanisms of the Ti-Mo biomaterials in Selective Laser Melting(SLM)vary according to raw materials and fundamentally influence material performance,due to inhomogeneous chemical compositions and stability.Therefore,this work provides a comparative study on microstructure,mechanical and wear performance,and underlying thermal mechanisms of two promising Ti-Mo biomaterials prepared by SLM but through different synthesis mechanisms to offer scientific understanding for creation of ideal metal implants.They are(i)Ti-7.5 Mo alloys,prepared from a conventional Ti/Mo powder mixture,and(ii)Ti-7.5 Mo-2.4 Ti C composites,in-situ prepared from Ti/Mo_(2)C powder mixture.Results reveal that the in-situ Ti-7.5 Mo-2.4 Ti C composites made from Ti/Mo_(2)C powder mixture by SLM can produce 61.4%moreβphase and extra Ti C precipitates(diameter below 229.6 nm)than the Ti-7.5 Mo alloys.The fine Ti C not only contributes to thinner and shorterβcolumnar grains under a large temperature gradient of 51.2 K/μm but also benefits material performance.The in-situ Ti-7.5 Mo-2.4 Ti C composites produce higher yield strength(980.1±29.8 MPa)and ultimate compressive strength(1561.4±39 MPa)than the Ti-7.5 Mo alloys,increasing by up to 12.1%.However,the fine Ti C with an aspect ratio of 2.71 dominates an unfavourable rise of elastic modulus to 91.9±2 GPa,44.7%higher than the Ti-7.5 Mo alloys,which,nevertheless,is still lower than the modulus of traditional Ti-6 Al-4 V.While,Ti C and its homogeneous distribution benefit wear resistance,decreasing the wear rate of the in-situ Ti-7.5 Mo-2.4 Ti C composites to 6.98×10^(-4)mm^3 N^(-1)m^(-1),which is 36%lower than that of the Ti-7.5 Mo alloys.Therefore,although with higher modulus than the Ti-7.5 Mo alloys,the SLM-fabricated in-situ Ti-7.5 Mo-2.4 Ti C composites can expect to provide good biomedical application potential in cases where combined good strength and wear resistance are required. 展开更多
关键词 Selective laser melting(SLM) Titanium Metal matrix composites MICROSTRUCTURES Mechanical properties Wear properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部