Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in exce...Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H2 chemisorption results confirmed that Pd-Cu singleatom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.展开更多
文摘Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H2 chemisorption results confirmed that Pd-Cu singleatom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.