We theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction. It is found that with some temperature distributions a thermal spin current ...We theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction. It is found that with some temperature distributions a thermal spin current can even be produced without the help of magnetic flux and by tuning the spin interference effect in the system, a pure spin or fully spin-polarized current can be driven by temperature differences. For the cases that two of the terminals are held at the same temperature, the charge (spin) thermopower and the charge (spin) figure of merit are defined and calculated in the linear response regime. With some choices of the system parameters the calculated spin and charge thermopowers are of the same order of magnitude and the charge figure of merit can exceed 1.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11604113the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.17KJB140004
文摘We theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction. It is found that with some temperature distributions a thermal spin current can even be produced without the help of magnetic flux and by tuning the spin interference effect in the system, a pure spin or fully spin-polarized current can be driven by temperature differences. For the cases that two of the terminals are held at the same temperature, the charge (spin) thermopower and the charge (spin) figure of merit are defined and calculated in the linear response regime. With some choices of the system parameters the calculated spin and charge thermopowers are of the same order of magnitude and the charge figure of merit can exceed 1.