期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
1
作者 Makhamisa Senekane benedict molibeli taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 QUANTUM Quantum Machine Learning Machine Learning Support Vector Machine Quantum Support Vector Machine ENERGY Solar Irradiation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部