期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Earth orientation parameters from VLBI determined with a Kalman filter 被引量:2
1
作者 Maria Karbon benedikt soja +3 位作者 Tobias Nilsson Zhiguo Deng Robert Heinkelmann Harald Schuh 《Geodesy and Geodynamics》 2017年第6期396-407,共12页
This paper introduces the reader to our Kalman filter developed for geodetic VLBI(very long baseline interferometry) data analysis. The focus lies on the EOP(Earth Orientation Parameter) determination based on the Con... This paper introduces the reader to our Kalman filter developed for geodetic VLBI(very long baseline interferometry) data analysis. The focus lies on the EOP(Earth Orientation Parameter) determination based on the Continuous VLBI Campaign 2014(CONT14) data, but also earlier CONT campaigns are analyzed. For validation and comparison purposes we use EOP determined with the classical LSM(least squares method) estimated from the same VLBI data set as the Kalman solution with a daily resolution. To gain higher resolved EOP from LSM we run solutions which yield hourly estimates for polar motion and dUTl = Universal Time(UT1)-Coordinated Universal Time(UTC). As an external validation data set we use a GPS(Global Positioning System) solution providing hourly polar motion results.Further, we describe our approach for determining the noise driving the Kalman filter. It has to be chosen carefully, since it can lead to a significant degradation of the results. We illustrate this issue in context with the de-correlation of polar motion and nutation.Finally, we find that the agreement with respect to GPS can be improved by up to 50% using our filter compared to the LSM approach, reaching a similar precision than the GPS solution. Especially the power of erroneous high-frequency signals can be reduced dramatically, opening up new possibilities for highfrequency EOP studies and investigations of the models involved in VLBI data analysis.We prove that the Kalman filter is more than on par with the classical least squares method and that it is a valuable alternative, especially on the advent of the VLBI2010 Global Observing System and within the GGOS frame work. 展开更多
关键词 VLBI 地球旋转 CONT14 Kalman 过滤器 数据分析 最少的广场 GPS
下载PDF
Collecting volunteered geographic information from the Global Navigation Satellite System(GNSS):experiences from the CAMALIOT project
2
作者 Linda See benedikt soja +10 位作者 Grzegorz Klopotek Tobias Sturn Rudi Weinacker Santosh Karanam Ivelina Georgieva Yuanxin Pan Laura Crocetti Markus Rothacher Vicente Navarro Steffen Fritz Ian McCallum 《International Journal of Digital Earth》 SCIE EI 2023年第1期2818-2841,共24页
Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized... Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized for low-cost precise positioning or in ionospheric or tropospheric applications.This paper presents results from data collection campaigns using the CAMALIOT mobile app.In the frst campaign,116.3 billion measurements from 11,828 mobile devices were collected from all continents.Although participation decreased during the second campaign,data are still being collected globally.In this contribution,we demonstrate the potential of volunteered geographic information(VGl)from mobile phones to fill data gaps in geodetic station networks that collect GNSS data,e.g.in Brazil,but also how the data can provide a denser set of observations than current networks in countries across Europe.We also show that mobile phones capable of dual-frequency reception,which is an emerging technology that can provide a richer source of GNSS data,are contributing in a substantial way.Finally,we present the results from a survey of participants to indicate that participation is diverse in terms of backgrounds and geography,where the dominant motivation for participation is to contribute to scientific research. 展开更多
关键词 Citizen science crowdsourcing volunteered geographicinformation(VGl) global navigation satellite system(GNSS) mobile apps Earth observation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部