Cadmium zinc telluride selenide (CdZnTeSe) is a new semiconductor material for gamma-ray detection and spectroscopy applications at room temperature. It has very high crystal quality compared to similar materials such...Cadmium zinc telluride selenide (CdZnTeSe) is a new semiconductor material for gamma-ray detection and spectroscopy applications at room temperature. It has very high crystal quality compared to similar materials such as cadmium telluride and cadmium zinc telluride. The consistency of peak position in radiation detection devices is important to practical applications. In this paper, we have characterized a CdZnTeSe planar detector for bias voltages in the range of -20 V to -200 V and amplifier shaping time of 2, 3 and 6 μs. The peak position of the 59.6-keV gamma line of <sup>241</sup>Am becomes more stable as the absolute value of the applied voltage increases. The best energy resolution of 8.5% was obtained for the 59.6-keV gamma peak at -160 V bias voltage and 3-μs shaping time. The energy resolution was relatively stable in the -120 V to -200 V range for a 6-μs shaping time. Future work will be focused on the study of the peak position and energy resolution over time.展开更多
文摘Cadmium zinc telluride selenide (CdZnTeSe) is a new semiconductor material for gamma-ray detection and spectroscopy applications at room temperature. It has very high crystal quality compared to similar materials such as cadmium telluride and cadmium zinc telluride. The consistency of peak position in radiation detection devices is important to practical applications. In this paper, we have characterized a CdZnTeSe planar detector for bias voltages in the range of -20 V to -200 V and amplifier shaping time of 2, 3 and 6 μs. The peak position of the 59.6-keV gamma line of <sup>241</sup>Am becomes more stable as the absolute value of the applied voltage increases. The best energy resolution of 8.5% was obtained for the 59.6-keV gamma peak at -160 V bias voltage and 3-μs shaping time. The energy resolution was relatively stable in the -120 V to -200 V range for a 6-μs shaping time. Future work will be focused on the study of the peak position and energy resolution over time.