The manufacturing process of all-solid-state batteries necessitates the use of polymer binders.However,these binders,being ionic insulators by nature,can adversely affect charge transport within composite cathodes,the...The manufacturing process of all-solid-state batteries necessitates the use of polymer binders.However,these binders,being ionic insulators by nature,can adversely affect charge transport within composite cathodes,thereby impacting the rate performance of the batteries.In this work,we aim to investigate the impact of fabrication methods,specifically the solvent-free dry process versus the slurry-cast wet process,on binder distribution and charge transport in composite cathodes of solid-state batteries.In the dry process,the binder forms a fibrous network,while the wet process results in binder coverage on the surface of cathode active materials.The difference in microstructure leads to a notable 20-fold increase in ionic conductivity in the dry-processed cathode.Consequently,the cells processed via the dry method exhibit higher capacity retention of 89%and 83%at C/3 and C/2 rates,respectively,in comparison to 68%and 58%for the wet-processed cells at the same rate.These findings provide valuable insights into the influence of fabrication methods on binder distribution and charge transport,contributing to a better understanding of the binder’s role in manufacturing of all-solid-state batteries.展开更多
基金supported by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Vehicle Technologies Program under Contact DE-EE0008864.
文摘The manufacturing process of all-solid-state batteries necessitates the use of polymer binders.However,these binders,being ionic insulators by nature,can adversely affect charge transport within composite cathodes,thereby impacting the rate performance of the batteries.In this work,we aim to investigate the impact of fabrication methods,specifically the solvent-free dry process versus the slurry-cast wet process,on binder distribution and charge transport in composite cathodes of solid-state batteries.In the dry process,the binder forms a fibrous network,while the wet process results in binder coverage on the surface of cathode active materials.The difference in microstructure leads to a notable 20-fold increase in ionic conductivity in the dry-processed cathode.Consequently,the cells processed via the dry method exhibit higher capacity retention of 89%and 83%at C/3 and C/2 rates,respectively,in comparison to 68%and 58%for the wet-processed cells at the same rate.These findings provide valuable insights into the influence of fabrication methods on binder distribution and charge transport,contributing to a better understanding of the binder’s role in manufacturing of all-solid-state batteries.