期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dosimetric Effects Due to Inter-Observer Variability of Organ Contouring When Utilizing a Knowledge-Based Planning System for Prostate Cancer
1
作者 Han Liu Christopher Amaloo +1 位作者 benjamin sintay David Wiant 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2021年第2期47-58,共12页
<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Radiotherapy is a widely accepted standard of care for early-sta... <strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Radiotherapy is a widely accepted standard of care for early-stage prostate cancer, and it is believed that the plan quality and treatment outcome are associated with contour accuracy of both the target and organs-at-risk (OAR). The purposes of this study are to 1) assess geometric and dosimetric uncertainties due to inter-observer contour variabilities and 2) evaluate the effectiveness of geometric indicators to predict target dosimetry in prostate radiotherapy. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Twenty prostate patients were selected for this retrospective study. Five experienced clinicians created unique structure sets containing prostate, seminal vesicles, bladder, and rectum for each patient. A fully automated script and knowledge-based planning routine were utilized to create standardized and unbiased plans that could be used to evaluate changes in isodose distributions due to inter-observer variability in structure segmentation. Plans were created on a “gold-standard” structure set, as well as on each of the user-defined structure sets. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> Inter-observer variability of contours during structure segmentation was very low for clearly defined organs such as the bladder but increased for organs without well-defined borders (prostate, seminal vesicles, and rectum). For plans generated with the user-defined structure sets, strong/moderate correlations were observed between the geometric indicators for target structure agreement and target coverage for both low-risk and intermediate-risk patient groups, while OAR indicators showed no correlation to final dosimetry. </span><b><span style="font-family:Verdana;">Conclusions:</span></b><span style="font-family:Verdana;"> Target delineation is crucial in order to maintain adequate dosimetric coverage regardless of the associated inter-observer uncertainties in OAR contours that had a limited impact upon final dosimetry.</span></span> 展开更多
关键词 Inter-Observer Variability of Organ Contouring Knowledge-Based Treat-ment Planning Prostate Radiotherapy
下载PDF
Automated Linac QA Using Scripting and Varian Developer Mode
2
作者 Keith Pearman Nicholas Koch +2 位作者 David Wiant Han Liu benjamin sintay 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2021年第4期149-168,共20页
<span><span><b><span style="font-family:"">Purpose:</span></b></span></span><span><span><span><span style="font-family:"&qu... <span><span><b><span style="font-family:"">Purpose:</span></b></span></span><span><span><span><span style="font-family:""> Linac quality assurance (QA) can be time consuming involving set up, execution, analysis and subject to user variability. The purpose of this study i</span></span></span></span><span><span><span><span style="font-family:"">s to develop qualitative automation tools for mechanical and imaging QA to improve efficiency, consistency, and accuracy. <b>Methods and Materials: </b>Traditionally QA ha</span></span></span></span><span><span><span><span style="font-family:"">s</span></span></span></span><span><span><span><span style="font-family:""> been performed with graph paper, film, and multiple phantoms. Analysis consists of ruler and vendor provided software. We have developed a single four-phantom<b> </b>method for QA procedures including light-radiation coincidence, imaging quality, table motion and Isocentricity an</span></span></span></span><span><span><span><span style="font-family:"">d separately cone beam computed tomography. XML scripts were developed to execute a series of tasks using Varian’s Truebeam Developer Mode. Non-phantom QA procedures have also been developed including field size, dose rate, MLC position, MLC and gantry speed, star shot, Winston-Lutz and Half Beam Block. All analysis is performed using inhouse MATLAB codes. <b>Results: </b>Overall time savings were 2.2 hours per Linac per month. Consistency improvements (standard deviation, STD) were observed for some tests. For example: field size improved from 0.11</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.04</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm and table motion improved from 0.17</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.12</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm. CBCT STD improved from 0.99</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.61</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm for slice thickness. No STD change was observed for Isocentricity test. We noticed an increase in STD from 0.33</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.41</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm for light-radiation coincidence test. There was a small drop in field size accuracy. Isocentricity showed an increase in measurement accuracy from 0.47</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.15</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm. Table motion increased in accuracy from 0.20</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm to 0.16</span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span><span><span><span style="font-family:"">mm. <b>Conclusion: </b>Automation is a viable, accurate and efficient option for monthly and annual QA. 展开更多
关键词 Varian Developer Mode SCRIPTING Automation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部