期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction 被引量:8
1
作者 Jiayuan Yu Weijia Zhou +3 位作者 Tanli Xiong Aili Wang Shaowei Chen benli chu 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2599-2609,共11页
Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction ... Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction (HER). Herein, we report a durable and highly active electrochemical HER catalyst based on defect-rich TiO2 nanoparticles loaded on Co nanoparticles@N-doped carbon nanotubes (D-TiOdCo@NCT) synthesized by electrostatic spinning and a subsequent calcining process. The ultrasmall TiO2 nanoparticles are 1.5-2 nm in size and have a defect-rich structure of oxygen vacancies. D-TiO2/Co@NCT exhibits excellent HER catalytic activity in an acidic electrolyte (0.5 M H2SO4), with a low onset potential of -57.5 mV (1 mA·cm^-2), a small Tafel slope of 73.5 mV·dec^-1, and extraordinary long-term durability. X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical calculations confirm that the Ti3. defect-rich structure can effectively regulate the catalytic activity for electrochemical water splitting. 展开更多
关键词 ultrasmall nanoparticle TiO2 defect structure carbon nanotube hydrogen-evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部