Hydrotherapy (exercise in warm water) is considered to be a safe and beneficial method to use in the rehabilitation of stable heart failure patients, but there is little information on the effect of the increased veno...Hydrotherapy (exercise in warm water) is considered to be a safe and beneficial method to use in the rehabilitation of stable heart failure patients, but there is little information on the effect of the increased venous return and enhanced preload in elderly patientswith biventricular heart failure. We present a case of an elderly man whowas recruited to participate in a hydrotherapy study. We compared echocardiographic data duringwarm water immersion with land measurements, and observed increases in stroke volume from 32 mL (land) to 42 mL (water), left ventricular ejection fraction from 22% to 24%, left ventricular systolic velocity from 4.8 cm/s to 5.0 cm/s and left atrioventricular plane displacement from 2.1 mm to 2.2 mm. By contrast, right ventricular systolic velocity decreased from 11.2 cm/s to 8.4 cm/s and right atrioventricular plane displacement from 8.1 mm to 4.7 mm. The tricuspid pressure gradient rose from 18 mmHg on land to 50mmHg during warm water immersion. Thus, although left ventricular systolic function was relatively unaffected during warm water immersion, we observed a decrease in right ventricular function with an augmented right ventricular pressure. We recommend further investigations to observe the cardiac effect of warm water immersion on patients with biventricular systolic heart failure and at risk of elevated right ventricular pressure.展开更多
文摘Hydrotherapy (exercise in warm water) is considered to be a safe and beneficial method to use in the rehabilitation of stable heart failure patients, but there is little information on the effect of the increased venous return and enhanced preload in elderly patientswith biventricular heart failure. We present a case of an elderly man whowas recruited to participate in a hydrotherapy study. We compared echocardiographic data duringwarm water immersion with land measurements, and observed increases in stroke volume from 32 mL (land) to 42 mL (water), left ventricular ejection fraction from 22% to 24%, left ventricular systolic velocity from 4.8 cm/s to 5.0 cm/s and left atrioventricular plane displacement from 2.1 mm to 2.2 mm. By contrast, right ventricular systolic velocity decreased from 11.2 cm/s to 8.4 cm/s and right atrioventricular plane displacement from 8.1 mm to 4.7 mm. The tricuspid pressure gradient rose from 18 mmHg on land to 50mmHg during warm water immersion. Thus, although left ventricular systolic function was relatively unaffected during warm water immersion, we observed a decrease in right ventricular function with an augmented right ventricular pressure. We recommend further investigations to observe the cardiac effect of warm water immersion on patients with biventricular systolic heart failure and at risk of elevated right ventricular pressure.