Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can expli...Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can explicitly delineate the pathological condition of the lungs.To meet the imperative for accurate diagnosis by physicians,expeditious segmentation of the region harboring lung cancer is of utmost significance.We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner,erect an interpretable model,and attain segmentation of lung cancer.The specific advancements can be encapsulated as follows:1)Concentration on the lung parenchyma region:Based on 16-bit CT image capturing and the luminance characteristics of lung cancer,we proffer an intercept histogram algorithm.2)Focus on the specific locus of lung malignancy:Utilizing the spatial interrelation of lung cancer,we propose a memory-based Unet architecture and incorporate skip connections.3)Data Imbalance:In accordance with the prevalent situation of an overabundance of negative samples and a paucity of positive samples,we scrutinize the existing loss function and suggest a mixed loss function.Experimental results with pre-existing publicly available datasets and assembled datasets demonstrate that the segmentation efficacy,measured as Area Overlap Measure(AOM)is superior to 0.81,which markedly ameliorates in comparison with conventional algorithms,thereby facilitating physicians in diagnosis.展开更多
In order to investigate the effects of slurry recirculation technology on anaerobic digestion performance of maize straw silage,maize straw silage was fermented with recirculated biogas slurry,and the gas production,p...In order to investigate the effects of slurry recirculation technology on anaerobic digestion performance of maize straw silage,maize straw silage was fermented with recirculated biogas slurry,and the gas production,p H value,methane content,volatile organic acids( VFAs)contents,chemical oxygen demand( COD) removal rate and other indicators were studied. The results showed that the fermentation time was positively correlated with daily gas production,methane content,cumulative gas production,VFAs and COD removal rate. Although the p H value fluctuated,it was still in the normal reaction range. The daily gas production was about 1. 26 L. The acetic acid content increased first,then decreased,then increased,and finally stabilized. The biogas slurry recirculation technology saves water resources by 40 m L/d without affecting the normal gas production of anaerobic fermentation,and reduces the consumption of environmental resources. It has important development significance for the sustainable use of biomass resources.展开更多
Anaerobic fermentation can increase biomass energy use efficiency of crop straws and realize win-win of energy and environment.This paper explored the biogas generation performance of anaerobic digestion of cow dung l...Anaerobic fermentation can increase biomass energy use efficiency of crop straws and realize win-win of energy and environment.This paper explored the biogas generation performance of anaerobic digestion of cow dung liquid as nitrogen source in three different levels of stirring intensity at 30℃ constant temperature condition. Through p H value,biogas production,chemical oxygen demand( COD),methane content,volatile fatty acid( VFA),principal component analysis( PCA) and modified Gompertz model,effects of agitating intensity on anaerobic digestion performance of corn straw silage were evaluated. Results indicate that the COD removal rate of three agitating intensity levels is higher than 85%,and p H value is about 6.5; the cumulative biogas production after 20 days is 2h > 4h > 1h of agitating; in the49 th day,the biogas production is 1.9 Lat 30 min /2h,1.7 L at 30 min /4 h,and 1. 6 Lat 30 min / h; the maximum biogas production rate is 30 min /2h > 30 min /4h > 30 min / h; and the maximum methane production rate is 30 min /4h > 30 min /2h > 30 min / h; in the same energy consumption,the biogas production at 30 min /4h is higher than 1h. In conclusion,overall analysis of energy consumption and economic factors indicate that 30 min /4 h agitating intensity is more suitable for straw biogas fermentation project. This study is expected to provide theoretical foundation for biogas fermentation project.展开更多
基金This work is supported by Light of West China(No.XAB2022YN10).
文摘Lung cancer is a malady of the lungs that gravely jeopardizes human health.Therefore,early detection and treatment are paramount for the preservation of human life.Lung computed tomography(CT)image sequences can explicitly delineate the pathological condition of the lungs.To meet the imperative for accurate diagnosis by physicians,expeditious segmentation of the region harboring lung cancer is of utmost significance.We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner,erect an interpretable model,and attain segmentation of lung cancer.The specific advancements can be encapsulated as follows:1)Concentration on the lung parenchyma region:Based on 16-bit CT image capturing and the luminance characteristics of lung cancer,we proffer an intercept histogram algorithm.2)Focus on the specific locus of lung malignancy:Utilizing the spatial interrelation of lung cancer,we propose a memory-based Unet architecture and incorporate skip connections.3)Data Imbalance:In accordance with the prevalent situation of an overabundance of negative samples and a paucity of positive samples,we scrutinize the existing loss function and suggest a mixed loss function.Experimental results with pre-existing publicly available datasets and assembled datasets demonstrate that the segmentation efficacy,measured as Area Overlap Measure(AOM)is superior to 0.81,which markedly ameliorates in comparison with conventional algorithms,thereby facilitating physicians in diagnosis.
基金Supported by Project of Education Department of Jilin Province(JJKH20191130KJ)Project of Science and Technology Bureau of Yanbian Korean Autonomous Prefecture(2016NS11)
文摘In order to investigate the effects of slurry recirculation technology on anaerobic digestion performance of maize straw silage,maize straw silage was fermented with recirculated biogas slurry,and the gas production,p H value,methane content,volatile organic acids( VFAs)contents,chemical oxygen demand( COD) removal rate and other indicators were studied. The results showed that the fermentation time was positively correlated with daily gas production,methane content,cumulative gas production,VFAs and COD removal rate. Although the p H value fluctuated,it was still in the normal reaction range. The daily gas production was about 1. 26 L. The acetic acid content increased first,then decreased,then increased,and finally stabilized. The biogas slurry recirculation technology saves water resources by 40 m L/d without affecting the normal gas production of anaerobic fermentation,and reduces the consumption of environmental resources. It has important development significance for the sustainable use of biomass resources.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD21B00)Special Fund for Scientific Research of Public Welfare Industry(Agriculture)(201503137+1 种基金201303080)Project of Department of Education of Jilin Province(012015061)
文摘Anaerobic fermentation can increase biomass energy use efficiency of crop straws and realize win-win of energy and environment.This paper explored the biogas generation performance of anaerobic digestion of cow dung liquid as nitrogen source in three different levels of stirring intensity at 30℃ constant temperature condition. Through p H value,biogas production,chemical oxygen demand( COD),methane content,volatile fatty acid( VFA),principal component analysis( PCA) and modified Gompertz model,effects of agitating intensity on anaerobic digestion performance of corn straw silage were evaluated. Results indicate that the COD removal rate of three agitating intensity levels is higher than 85%,and p H value is about 6.5; the cumulative biogas production after 20 days is 2h > 4h > 1h of agitating; in the49 th day,the biogas production is 1.9 Lat 30 min /2h,1.7 L at 30 min /4 h,and 1. 6 Lat 30 min / h; the maximum biogas production rate is 30 min /2h > 30 min /4h > 30 min / h; and the maximum methane production rate is 30 min /4h > 30 min /2h > 30 min / h; in the same energy consumption,the biogas production at 30 min /4h is higher than 1h. In conclusion,overall analysis of energy consumption and economic factors indicate that 30 min /4 h agitating intensity is more suitable for straw biogas fermentation project. This study is expected to provide theoretical foundation for biogas fermentation project.