This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achi...This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achieve controlled and adjustable heating of the circulating water.Simulations were conducted to study the thermal performance of the system while it simultaneously produces hot and cold water,with different working conditions for the hot-and cold-side water outlets.The results show that the water temperature at the hot side outlet increases from 32℃to 75℃when the power increases from 4.5 to 50 W.Additionally,the use of thermoelectric modules to heat water and recover waste heat is 22%more efficient than ordinary electric water heating systems.展开更多
文摘This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achieve controlled and adjustable heating of the circulating water.Simulations were conducted to study the thermal performance of the system while it simultaneously produces hot and cold water,with different working conditions for the hot-and cold-side water outlets.The results show that the water temperature at the hot side outlet increases from 32℃to 75℃when the power increases from 4.5 to 50 W.Additionally,the use of thermoelectric modules to heat water and recover waste heat is 22%more efficient than ordinary electric water heating systems.