期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization Management of Industrial Organizations Based on Performance Indicators
1
作者 Anne Marie Chana bernabé batchakui Blaise Ndangang 《World Journal of Engineering and Technology》 2024年第1期185-199,共15页
This paper proposes an intelligent management system (IMS) to help managers in their delicate and tedious task of exploiting the plethora of data (indicators) contained in management dashboards. This system is based o... This paper proposes an intelligent management system (IMS) to help managers in their delicate and tedious task of exploiting the plethora of data (indicators) contained in management dashboards. This system is based on intelligent agents, ontologies and data mining. It is implemented by PASSI (Process for Agent Societies Specification and Implementation) methods for agent design and implementation, the Methodology for Knowledge Modeling and Hot-Winters for data prediction. Intelligent agents not only track indicators but also store the knowledge of managers within the company. Ontologies are used to manage the representation and presentation aspects of knowledge. Data mining makes it possible to: make the most of all available data;model the industrial process of data selection, exploration and modeling;and transform behaviors into predictive indicators. An instance of the IMS named SYGISS, currently in operation within a large brewery organization, allows us to observe very interesting results: the extraction of indicators is done in less than 5 minutes whereas manual extraction used to take 14 days;the generation of dashboards is instantaneous whereas it used to take 12 hours;the interpretation of indicators is instantaneous whereas it used to take a day;forecasts are possible and are done in less than 5 minutes whereas they did not exist with the old management. These important contributions help to optimize the management of this organization. 展开更多
关键词 Performance Indicator Intelligent Agent Data Mining Intelligent Management System Enterprise Management
下载PDF
Real-Time Crop Prediction Based on Soil Fertility and Weather Forecast Using IoT and a Machine Learning Algorithm
2
作者 Anne Marie Chana bernabé batchakui Boris Bam Nges 《Agricultural Sciences》 CAS 2023年第5期645-664,共20页
The aim of this article is to assist farmers in making better crop selection decisions based on soil fertility and weather forecast through the use of IoT and AI (smart farming). To accomplish this, a prototype was de... The aim of this article is to assist farmers in making better crop selection decisions based on soil fertility and weather forecast through the use of IoT and AI (smart farming). To accomplish this, a prototype was developed capable of predicting the best suitable crop for a specific plot of land based on soil fertility and making recommendations based on weather forecast. Random Forest machine learning algorithm was used and trained with Jupyter in the Anaconda framework to achieve an accuracy of about 99%. Based on this process, IoT with the Message Queuing Telemetry Transport (MQTT) protocol, a machine learning algorithm, based on Random Forest, and weather forecast API for crop prediction and recommendations were used. The prototype accepts nitrogen, phosphorus, potassium, humidity, temperature and pH as input parameters from the IoT sensors, as well as the weather API for data forecasting. The approach was tested in a suburban area of Yaounde (Cameroon). Taking into account future meteorological parameters (rainfall, wind and temperature) in this project produced better recommendations and therefore better crop selection. All necessary results can be accessed from anywhere and at any time using the IoT system via a web browser. 展开更多
关键词 Smart Farming Crop Selection Recommendation of Crops IOT Machine Learning Weather Forecast
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部