Melatonin is a hormone synthesized and released primarily by the pineal gland. Its secretion fol-lows a circadian rhythm with a peak overnight. Its secretion is initiated approximately to the three months of age and c...Melatonin is a hormone synthesized and released primarily by the pineal gland. Its secretion fol-lows a circadian rhythm with a peak overnight. Its secretion is initiated approximately to the three months of age and continues to rise during the childhood. Previous to the puberty there is a de-crease of melatonin secretion that continues until the old age. Melatonin has effects in the body and acts through at least four mechanisms: membrane receptors, orphan nuclear receptors, calmodulin and free radicals. It has been suggested that aging can be a consequence of the oxidation of cells that eventually become vulnerable to injury and die. This work reviews the antioxidant effects of melatonin in a rodent model, on the formation of free radicals, on the MAP2 protein expression and on the electrophysiology of the hippocampus at different ages. The results indicate that melatonin maintains in a “best” state to the experimental animals compared to controls. It suggests the use of melatonin as a therapy to prevent or delay the aging effects on the cells.展开更多
文摘Melatonin is a hormone synthesized and released primarily by the pineal gland. Its secretion fol-lows a circadian rhythm with a peak overnight. Its secretion is initiated approximately to the three months of age and continues to rise during the childhood. Previous to the puberty there is a de-crease of melatonin secretion that continues until the old age. Melatonin has effects in the body and acts through at least four mechanisms: membrane receptors, orphan nuclear receptors, calmodulin and free radicals. It has been suggested that aging can be a consequence of the oxidation of cells that eventually become vulnerable to injury and die. This work reviews the antioxidant effects of melatonin in a rodent model, on the formation of free radicals, on the MAP2 protein expression and on the electrophysiology of the hippocampus at different ages. The results indicate that melatonin maintains in a “best” state to the experimental animals compared to controls. It suggests the use of melatonin as a therapy to prevent or delay the aging effects on the cells.