期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Analysis of Interplanetary Shocks Associated with Six Major Geo-Effective Coronal Mass Ejections during Solar Cycle 24
1
作者 Shirsh Lata Soni Prithvi Raj Singh +2 位作者 bharti nigam Radhe Syam Gupta Pankaj Kumar Shrivastava 《International Journal of Astronomy and Astrophysics》 2019年第3期191-199,共9页
A Coronal Mass Ejection (CME) is an ejection of energetic plasma with magnetic field from the Sun. In traversing the Sun-Earth distance, the kinematics of the CME is immensely important for the prediction of space wea... A Coronal Mass Ejection (CME) is an ejection of energetic plasma with magnetic field from the Sun. In traversing the Sun-Earth distance, the kinematics of the CME is immensely important for the prediction of space weather. The objective of the present work is to study the propagation properties of six major geo-effective CMEs and their associated interplanetary shocks which were observed during solar cycle 24. These reported CME events produced intense geo-magnetic storms (Dst > 140 nT). The six CME events have a broad range of initial linear speeds ~600 - 2700 km/sec in the LASCO/SOHO field of view, comparing two slow CMEs (speed ~579 km/sec and 719 km/sec), three moderate speed CMEs (speed ~1366, 1571, 1008 km/sec), and one fast CME (speed ~2684 km/sec). The actual arrival time of the reported events is compared with the arrival time calculated using the Empirical Shock Arrival model (ESA model). For acceleration estimation, we utilize three different acceleration-speed equations reported in the previous literatures for different acceleration cessation distance (ACD). In addition, we compared the transit time estimated using the second-order speed of CMEs with observed transit time. We also compared the observed transit time with transit time obtained from various shock arrival model. From our present study, we found the importance of acceleration cessation distance for CME propagation in interplanetary space and better acceleration speed for transit time calculation than other equations for CME forecasting. 展开更多
关键词 CORONAL Mass EJECTION (CME) IP Shock GEOMAGNETIC Strom
下载PDF
Effect of Coronal Mass Ejection on Earth’s Magnetic Field during Ascending Phase of Solar Cycles 23-24
2
作者 bharti nigam Prithvi Raj Singh +2 位作者 Pramod Kumar Chamadia Ajay Kumar Saxena Chandra Mani Tiwari 《International Journal of Astronomy and Astrophysics》 2017年第3期213-220,共8页
We have studied the width and speed of coronal mass ejections (CMEs) and geomagnetic disturbance storm time (Dst) Index during ascending phase of solar cycles 23 and 24. We have classified total CMEs according to angu... We have studied the width and speed of coronal mass ejections (CMEs) and geomagnetic disturbance storm time (Dst) Index during ascending phase of solar cycles 23 and 24. We have classified total CMEs according to angular width and speed for the ascending period 1996-2002 and 2008-2014. We have found that the width of 62% CMEs is narrow, and 3% are Halo for the solar cycle 23 and 73% CMEs are narrow, and 2% CMEs are Halo for the solar cycle 24. The speed distribution of 65% CMEs has speed ≤ 500 km/sec and 4% CMEs has speed > 1000 km/sec for solar cycle 23 and 84% CMEs has speed ≤ 500 km/sec and 1% CMEs has speed > 1000 km/sec in cycle 24. The relationship between width and speed is more pronounced for fast ejecta (>1000 km/sec.), while slower ejecta shows more astronomically immense scatter. We have reported that the correlation between Dst and CMEs for ascending phase of solar cycle 24 is less than as compare to ascending phase of solar cycle 23. 展开更多
关键词 CME DST SSN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部