The slow light propagation in a line defect waveguide in chalcogenide photonic crystal of As2S3 rods in air medium has been investigated. It is found that the filling factor of the chaleogenide photonic crystal and th...The slow light propagation in a line defect waveguide in chalcogenide photonic crystal of As2S3 rods in air medium has been investigated. It is found that the filling factor of the chaleogenide photonic crystal and the size of defect rods decide the propagation of the guided mode. An increase in the filling factor results in a sharp decrease of the group velocity in the photonic crystal waveguide. It has been demonstrated that, by tuning the filling factor and size of defect rods, the group velocity will be reduced up to about 0.22c.展开更多
In the present paper, we study the transmission of the two-dimensional photonic crystal (PC) superellipse ring resonator. The fast growing applications of optomechanical systems lead to strong demands in new sensing...In the present paper, we study the transmission of the two-dimensional photonic crystal (PC) superellipse ring resonator. The fast growing applications of optomechanical systems lead to strong demands in new sensing mechanism in order to design the sensing elements to nanometer scale. The photonic crystal based resonator has been investigated as promising solutions because the band gap structure and resonator characteristics are extremely sensitive to the deformation and position shift of rod/cavity in PC resonators. This structure opens a single channel filter. The study is extended for tuning of channel filter's wavelength with a temperature of this structure. The transmission of the channel filter shows a red shift with temperature linearly. This wavelength shift of the channel filter is used for the sensor application. The sensitivity for the proposed structure is found to be 65.3pm/℃. The outstanding sensing capability renders PC resonators as a promising optomechanical sensing element to be integrated into various transducers for temperature sensing applications.展开更多
基金supported by the CSIR,New Delhi of India under Grant No.08/329/(0008)/2006-EMR-I
文摘The slow light propagation in a line defect waveguide in chalcogenide photonic crystal of As2S3 rods in air medium has been investigated. It is found that the filling factor of the chaleogenide photonic crystal and the size of defect rods decide the propagation of the guided mode. An increase in the filling factor results in a sharp decrease of the group velocity in the photonic crystal waveguide. It has been demonstrated that, by tuning the filling factor and size of defect rods, the group velocity will be reduced up to about 0.22c.
文摘In the present paper, we study the transmission of the two-dimensional photonic crystal (PC) superellipse ring resonator. The fast growing applications of optomechanical systems lead to strong demands in new sensing mechanism in order to design the sensing elements to nanometer scale. The photonic crystal based resonator has been investigated as promising solutions because the band gap structure and resonator characteristics are extremely sensitive to the deformation and position shift of rod/cavity in PC resonators. This structure opens a single channel filter. The study is extended for tuning of channel filter's wavelength with a temperature of this structure. The transmission of the channel filter shows a red shift with temperature linearly. This wavelength shift of the channel filter is used for the sensor application. The sensitivity for the proposed structure is found to be 65.3pm/℃. The outstanding sensing capability renders PC resonators as a promising optomechanical sensing element to be integrated into various transducers for temperature sensing applications.