期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Large eddy simulation of cavitating flows with dynamic adaptive mesh refinement using OpenFOAM 被引量:5
1
作者 Lin-min Li Dai-qing Hu +4 位作者 Yu-cheng Liu bi-tao wang Chen Shi Jun-jie Shi Chang Xu 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第2期398-409,共12页
Cavitating flows are dominated by large gradients of physical properties and quantities containing complicated interfacial structures and lots of multi-scale eddies that need to be accurately characterized using a hig... Cavitating flows are dominated by large gradients of physical properties and quantities containing complicated interfacial structures and lots of multi-scale eddies that need to be accurately characterized using a high-resolution mesh.The present work,within OpenFOAM,proposes an effective modeling framework using the large eddy simulation(LES)approach along with the volume of fluid(VOF)method to simulate the two-phase flow system and applies the Schnerr-Sauer model to calculate the mass-transfer rate between water and vapor.The adaptive mesh refinement(AMR)which is a powerful tool for allocating high-resolution grids only to the region of the greatest concern is adopted for improving the solution of interfacial structures.The effect of grid size is firstly investigated and the time-averaged quantities are verified against the experimental data,and then simulations of cavitating flows are successfully achieved to precisely characterize the features of cavitation with automatically and dynamically refining the mesh.As the refinement only takes place in the interfacial region,high-precision simulations can be achieved with limited computational resources,and the method shows promising prospects for modeling of the multi-scale,time-critical and computationally intensive cavitating flows. 展开更多
关键词 Cavitating flows large eddy simulation(LES) MULTI-SCALE adaptive mesh refinement(AMR) OPENFOAM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部