期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Extraction and recycling technologies of cobalt from primary and secondary resources:A comprehensive review
1
作者 Yukun Huang Pengxu Chen +5 位作者 Xuanzhao Shu biao fu Weijun Peng Jiang Liu Yijun Cao Xiaofeng Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期628-649,共22页
Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially deplete... Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially depleted cobalt resources,leading to a crisis of cobalt resource supply.The paper examines cobalt ore reserves and distribution,and the recent development and consumption of cobalt resources are summarized as well.In addition,the principles,advantages and disadvantages,and research status of various methods are discussed comprehensively.It can be concluded that the use of diverse sources(Cu-Co ores,Ni-Co ores,zinc plant residues,and waste cobalt products)for cobalt production should be enhanced to meet developmental requirements.Furthermore,in recovery technology,the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals,enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production.Consequently,it represents a promising technology for future cobalt recovery.Lastly,based on the above conclusions,the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling,for which further study should be conducted. 展开更多
关键词 cobalt recovery copper-cobalt ore nickel-cobalt ore zinc plant residue waste cobalt products
下载PDF
Method for evaluation of the cleanliness grade of coal resources in the Huainan Coalfield,Anhui,China:a case study 被引量:1
2
作者 Guangqing Hu Guijian Liu +2 位作者 Dun Wu Wenyong Zhang biao fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期534-546,共13页
Based on analysis of a large data set and supplementary sampling and analysis for hazardous trace elements in coal samples from the Huainan Coalfield,a generalized contrast-weighted scale index method was used to esta... Based on analysis of a large data set and supplementary sampling and analysis for hazardous trace elements in coal samples from the Huainan Coalfield,a generalized contrast-weighted scale index method was used to establish a model to evaluate the grade of coal cleanliness and its regional distribution in the main coal seam(No.13-1)The results showed that:(1)The contents of Cr,Mn and Ni in the coal seam are relatively high and the average values are greater than 20μg/g.The contents of Se and Hg are at a high level while most other trace elements are at normal levels.(2)The cleanliness grade of the coal seam is mainly grade III-IV,which corresponds to a relatively good-medium coal cleanliness grade.However,some parts of the seam are at grade V(relatively poor coal cleanliness).(3)Coal of relatively good cleanliness grade(grade III)is distributed mainly in the regions corresponding to the Zhuji-Dingji-Gubei coal mines and in the eastern periphery of the Panji coal mine.Coal of medium cleanliness(grade IV)is distributed mainly in the regions of the Panji-Xiejiaji and Kouzidong coalmines.Relatively poor grade coal(grade V)is distributed in the southwest regions of the coalfield and the contents of Cr,As and Hg in coal collected from the relatively poor coal cleanliness regions often exceed the regulatory standards for the maximum concentration limits. 展开更多
关键词 Coal cleanliness Hazardous trace elements Evaluation method Huainan coalfield
下载PDF
Liberal versus restricted fluid administration in heart failure patients:a meta-analysis of 6 randomized trials 被引量:1
3
作者 biao fu Yang Li 《中国循环杂志》 CSCD 北大核心 2016年第z1期-,共1页
下载PDF
One-step synthesis of N-doped metal/biochar composite using NH_3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue 被引量:8
4
作者 Md Manik Mian Guijian Liu +5 位作者 Balal Yousaf biao fu Rafay Ahmed Qumber Abbas Mehr Ahmed Mujtaba Munir Liu Ruijia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第4期29-41,共13页
A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment... A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment.The physiochemical properties of composites were characterized thoroughly.It has found that heating temperature and N-doping through NH_3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites.The catalytic activities of composites were measured by degradation of Methylene Blue(MB)in the presence or absence of H_2O_2 and visible-light irradiation.Our best catalyst(N–TiO_2–Fe_3O_4-biochar)exhibits rapid and high MB removal competency(99.99%)via synergism of adsorption,photodegradation,and Fenton-like reaction.Continuous production of O_2U^-and UOH radicles performs MB degradation and mineralization,confirmed by scavenging experiments and degradation product analysis.The local trap state Ti^(3+),Fe_3O_4,and N-carbon of the catalyst acted as active sites.It has suggested that the Ti^(3+)and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction.Moreover,the catalyst is highly stable,collectible,and recyclable up to 5 cycles with high MB degradation efficiency.This work provides a new insight into the synthesis of highly visible-light sensitized biocharsupported photocatalyst through NH_3-ambiance pyrolysis of NPs-laden biomass. 展开更多
关键词 Biochar-supported photocatalyst N–TiO2–Fe3O4-biochar NH3-ambiance PYROLYSIS METHYLENE Blue Photocatalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部