Radiative cooling coatings are widely used owing to their excellent cooling performance and energy efficiency.However,there is a lack of comprehensive research on their weather resistance,long-term performance and eff...Radiative cooling coatings are widely used owing to their excellent cooling performance and energy efficiency.However,there is a lack of comprehensive research on their weather resistance,long-term performance and effects on building load.To fill this research gap,seven coatings were selected for experimental observation and simulation research.The results revealed noticeable differences among different coatings regarding anti-aging properties,cooling performance and building load reduction.Some coatings exhibited yellowing,cracking and peeling after weathering tests,accompanied by a decline in their radiative properties.Long-term tests showed that the cooling performance of all coatings gradually decreased due to natural aging,and the rate of decline was proportional to the weathering of the coatings.Building load simulations revealed the potential effect of coating selection on cooling and heating loads,thereby suggesting that different coatings should be selected based on actual usage scenarios in different climatic zones.展开更多
To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the con...To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the control problem,current methods fail to fully consider such factors as external disturbances,input dead zones,parameter uncertainties,and other unmodeled dynamics that DOCSs usually suffer from.As a result,dramatic degradation is caused in the control performance,which badly hinders the practical applications of DOCSs.Motivated by this fact,this paper designs a neural network-based adaptive sliding mode control(SMC)method for DOCS to solve the aforementioned issues,which achieves satisfactory control performance for both actuated and underactuated state variables,even in the presence of matched and mismatched disturbances.The asymptotic stability of the desired equilibrium point is proved with rigorous Lyapunov-based analysis.Finally,extensive hardware experimental results are collected to verify the efficiency and robustness of the proposed method.展开更多
As the fundamental energy storage components in electronic systems,dielectric capacitors with high power densities were demanded.In this work,the anti-ferroelectric Pb_(0.89)La_(0.06)Sr_(0.05)(Zr_(0.95)Ti_(0.05))O_(3)...As the fundamental energy storage components in electronic systems,dielectric capacitors with high power densities were demanded.In this work,the anti-ferroelectric Pb_(0.89)La_(0.06)Sr_(0.05)(Zr_(0.95)Ti_(0.05))O_(3)(PLSZT)ceramics and thin film capacitor were successfully fabricated by a solid-state reaction route and pulsed laser deposition method,respectively.The ferroelectric,dielectric,energy-storage properties,and temperature stability of anti-ferroelectric PLSZT capacitor were investigated in detail.By compared with the PLSZT ceramic(energy storage density is 1.29 J/cm^(3) with an efficiency of 78.7%under 75 kV/cm),the anti-ferroelectric PLSZT thin film capacitors exhibited the enhanced energy storage density of 52.6 J/cm^(3) with efficiency of 67.7%under an electric field as high as 2068.9 kV/cm,and the enhanced energy-storage temperature stabilities from room temperature(RT)to more than 200℃ were demonstrated,and the oxygen defects mechanism and size effect were discussed.Moreover,the fast charging(~0.05 μs)and discharging(~0.15 μs)time were certified for the anti-ferroelectric PLSZT film capacitor.These findings broaden the horizon for PLSZT anti-ferroelectrics in high energy storage properties and show promising for manufacturing pulse power capacitor.展开更多
The electrocaloric effect(ECE)in lead-free BaSn_(x)Ti_(1-x)O_(3)(BSnT,x=0.05,0.10 and 0.15)ceramics were investigated using a direct ECE measurement.Results indicate that the maximum ECE occurs near the Curie temperat...The electrocaloric effect(ECE)in lead-free BaSn_(x)Ti_(1-x)O_(3)(BSnT,x=0.05,0.10 and 0.15)ceramics were investigated using a direct ECE measurement.Results indicate that the maximum ECE occurs near the Curie temperature and it slightly shifts towards high temperatures.The directly measured ECE is larger than that calculated using the Maxwell relation and P-E loops.A maximum electrocaloric efficiencyΔT=ΔE=0.49-10-6 KmV-1 was procured for the composition with x=0.15 at T=299.2 K.And it also shows a broad peak in the temperature range of 250–320 K.展开更多
Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration ...Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2023CDJXY-008)
文摘Radiative cooling coatings are widely used owing to their excellent cooling performance and energy efficiency.However,there is a lack of comprehensive research on their weather resistance,long-term performance and effects on building load.To fill this research gap,seven coatings were selected for experimental observation and simulation research.The results revealed noticeable differences among different coatings regarding anti-aging properties,cooling performance and building load reduction.Some coatings exhibited yellowing,cracking and peeling after weathering tests,accompanied by a decline in their radiative properties.Long-term tests showed that the cooling performance of all coatings gradually decreased due to natural aging,and the rate of decline was proportional to the weathering of the coatings.Building load simulations revealed the potential effect of coating selection on cooling and heating loads,thereby suggesting that different coatings should be selected based on actual usage scenarios in different climatic zones.
基金This work is supported by the National Natural Science Foundation of China under Grant 61873132,and the Opening Project of Guangdong Provincial Key Lab of Robotics and Intelligent System.
文摘To improve transportation capacity,dual overhead crane systems(DOCSs)are playing an increasingly important role in the transportation of large/heavy cargos and containers.Unfortunately,when trying to deal with the control problem,current methods fail to fully consider such factors as external disturbances,input dead zones,parameter uncertainties,and other unmodeled dynamics that DOCSs usually suffer from.As a result,dramatic degradation is caused in the control performance,which badly hinders the practical applications of DOCSs.Motivated by this fact,this paper designs a neural network-based adaptive sliding mode control(SMC)method for DOCS to solve the aforementioned issues,which achieves satisfactory control performance for both actuated and underactuated state variables,even in the presence of matched and mismatched disturbances.The asymptotic stability of the desired equilibrium point is proved with rigorous Lyapunov-based analysis.Finally,extensive hardware experimental results are collected to verify the efficiency and robustness of the proposed method.
基金financially supported by National Natural Science Foundation of China(NSFC)(Grant Nos.51702055,62073084,11904056,and 51604087)the Guangdong Provincial Natural Science Foundation of China(Grant No.2016A030313718)+1 种基金the Science and Technology Program of Guangdong Province of China(Grant Nos.2016A010104018 and 2017A010104022)Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(Climbing Program Special Funds,Grant No.pdjh2020a0174,pdjh2019a0147).
文摘As the fundamental energy storage components in electronic systems,dielectric capacitors with high power densities were demanded.In this work,the anti-ferroelectric Pb_(0.89)La_(0.06)Sr_(0.05)(Zr_(0.95)Ti_(0.05))O_(3)(PLSZT)ceramics and thin film capacitor were successfully fabricated by a solid-state reaction route and pulsed laser deposition method,respectively.The ferroelectric,dielectric,energy-storage properties,and temperature stability of anti-ferroelectric PLSZT capacitor were investigated in detail.By compared with the PLSZT ceramic(energy storage density is 1.29 J/cm^(3) with an efficiency of 78.7%under 75 kV/cm),the anti-ferroelectric PLSZT thin film capacitors exhibited the enhanced energy storage density of 52.6 J/cm^(3) with efficiency of 67.7%under an electric field as high as 2068.9 kV/cm,and the enhanced energy-storage temperature stabilities from room temperature(RT)to more than 200℃ were demonstrated,and the oxygen defects mechanism and size effect were discussed.Moreover,the fast charging(~0.05 μs)and discharging(~0.15 μs)time were certified for the anti-ferroelectric PLSZT film capacitor.These findings broaden the horizon for PLSZT anti-ferroelectrics in high energy storage properties and show promising for manufacturing pulse power capacitor.
基金supported by the Natural Science Foundation of China(Grant Nos.51872053 and 51372042)Guangdong Provincial Natural Science Foundation(2015A030308004)the NSFC-Guangdong Joint Fund(Grant No.U1501246)。
文摘The electrocaloric effect(ECE)in lead-free BaSn_(x)Ti_(1-x)O_(3)(BSnT,x=0.05,0.10 and 0.15)ceramics were investigated using a direct ECE measurement.Results indicate that the maximum ECE occurs near the Curie temperature and it slightly shifts towards high temperatures.The directly measured ECE is larger than that calculated using the Maxwell relation and P-E loops.A maximum electrocaloric efficiencyΔT=ΔE=0.49-10-6 KmV-1 was procured for the composition with x=0.15 at T=299.2 K.And it also shows a broad peak in the temperature range of 250–320 K.
基金J.R.is supported by National Natural Science Foundation of China(NSFC-8182207)Shanghai Academic/Technology Research Leader(19XD1420600)Chinese Academy of Medical Sciences(2019-RC-HL_020).
文摘Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.