Summary of main observation and conclusion Tetracycline (TC) and other antibiotics accumulated in groundwater and soil pollute ecological environment and threaten human health. Gold nan oparticles doped on photocataly...Summary of main observation and conclusion Tetracycline (TC) and other antibiotics accumulated in groundwater and soil pollute ecological environment and threaten human health. Gold nan oparticles doped on photocatalysts are able to enhance the photodegradation efficiency during removing these antibiotics, but preparation of Au nanoparticles of well-dispersion on photocatalysts remains challenging. In this work, zeolite imidazolate (ZIF-8) was employed as the precursor to prepare Au@ZnO photocatalyst via impregnation and in-situ reduction method to efficiently degrade the tetracycline in the aqueous solution. Au nanoparticles are of 10 nm in size and uniformly dispersed on the surfaces of ZnO microstructures. The as-prepared Au@ZnO is able to remove 85.5% of TC of 0.010 mg/mL within 2h, presenting higher photocatalytic activity than pure ZnO catalyst. Most importantly, the catalyst shows its superior stability after five cycles without structure and activity changing. The mechanism of the photocatalytic degradation was discussed in detail.展开更多
文摘Summary of main observation and conclusion Tetracycline (TC) and other antibiotics accumulated in groundwater and soil pollute ecological environment and threaten human health. Gold nan oparticles doped on photocatalysts are able to enhance the photodegradation efficiency during removing these antibiotics, but preparation of Au nanoparticles of well-dispersion on photocatalysts remains challenging. In this work, zeolite imidazolate (ZIF-8) was employed as the precursor to prepare Au@ZnO photocatalyst via impregnation and in-situ reduction method to efficiently degrade the tetracycline in the aqueous solution. Au nanoparticles are of 10 nm in size and uniformly dispersed on the surfaces of ZnO microstructures. The as-prepared Au@ZnO is able to remove 85.5% of TC of 0.010 mg/mL within 2h, presenting higher photocatalytic activity than pure ZnO catalyst. Most importantly, the catalyst shows its superior stability after five cycles without structure and activity changing. The mechanism of the photocatalytic degradation was discussed in detail.