We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in li...We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α ~ 0.16.展开更多
We used the Fourier decomposition technique to investigate the stability of the X-ray pulse profile of a young pulsar PSR B1509–58 by studying the relative amplitudes and phase differences of its harmonic components ...We used the Fourier decomposition technique to investigate the stability of the X-ray pulse profile of a young pulsar PSR B1509–58 by studying the relative amplitudes and phase differences of its harmonic components with respect to the fundamental using data from the Rossi X-Ray Timing Explorer. Like most young rotation powered pulsars, PSR B1509–58 has a high spin down rate. It also has less timing noise, allowing accurate measurement of higher order frequency derivatives which in turn helps in the study of the physics of pulsar spin down. Detailed investigation of pulse profiles over the years will help us establish any possible connection between the timing characteristics and the high energy emission characteristics for this pulsar.Furthermore, the study of pulse profiles of short period X-ray pulsars can also be useful when used as a means of interplanetary navigation. The X-ray pulse profile of this source has been analyzed for 15 yr(1996–2011). The long term average amplitudes of the first, second and third harmonics(and their standard deviation for individual measurements) compared to the fundamental are 36.9%(1.7%), 13.4%(1.9%) and 9.4%(1.8%) respectively. Similarly, the phases of the three harmonics(and standard deviations) with respect to the fundamental are 0.36(0.06), 1.5(0.2) and 2.5(0.3) radian respectively. We do not find any significant variation of the harmonic components of the pulse profile in comparison to the fundamental.展开更多
文摘We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α ~ 0.16.
文摘We used the Fourier decomposition technique to investigate the stability of the X-ray pulse profile of a young pulsar PSR B1509–58 by studying the relative amplitudes and phase differences of its harmonic components with respect to the fundamental using data from the Rossi X-Ray Timing Explorer. Like most young rotation powered pulsars, PSR B1509–58 has a high spin down rate. It also has less timing noise, allowing accurate measurement of higher order frequency derivatives which in turn helps in the study of the physics of pulsar spin down. Detailed investigation of pulse profiles over the years will help us establish any possible connection between the timing characteristics and the high energy emission characteristics for this pulsar.Furthermore, the study of pulse profiles of short period X-ray pulsars can also be useful when used as a means of interplanetary navigation. The X-ray pulse profile of this source has been analyzed for 15 yr(1996–2011). The long term average amplitudes of the first, second and third harmonics(and their standard deviation for individual measurements) compared to the fundamental are 36.9%(1.7%), 13.4%(1.9%) and 9.4%(1.8%) respectively. Similarly, the phases of the three harmonics(and standard deviations) with respect to the fundamental are 0.36(0.06), 1.5(0.2) and 2.5(0.3) radian respectively. We do not find any significant variation of the harmonic components of the pulse profile in comparison to the fundamental.