Photo dissociation dynamics of diatomic molecular ion HBr+ interacting with ultra fast laser pulses of different envelop function has been presented both in zero and non zero temperature environment. The calculations...Photo dissociation dynamics of diatomic molecular ion HBr+ interacting with ultra fast laser pulses of different envelop function has been presented both in zero and non zero temperature environment. The calculations pertain primarily to the ground electronic state of the molecular ion HBr+. The used potential of HBr+ is calibrated with the help of the ab initio theoretical calculation at the CCSD/6-311++G(3df, 2pd) level and then fitted with appropriate Morse parameters. The numerical bound states vibrational eigenvalues obtained by the time independent Fourier Grid Hamiltonian method have been compared with analytical values of the fitted Morse potential. The effect of temperature, pulse envelops function, and light intensity on the dissociation process has been explored.展开更多
A two dimensional model approach for the photodetachment dynamics of closed shell an-ionic systems in presence of external light field have been proposed in the context of polar environmental media. The effects of str...A two dimensional model approach for the photodetachment dynamics of closed shell an-ionic systems in presence of external light field have been proposed in the context of polar environmental media. The effects of strong coupling between the solvent polarization and the extra charge in the system were studied by a simple model. The electronic states of con-cerned halide ions are represented by a two dimensional model Hamiltonian with a potential V(x,y)=-V0e^-σ(x^2+y^2). The time dependent Fourier grid Hamiltonian method have been used to follow the detachment process with fairly high intensities of light. The environmental effects on the dynamics are sought to be modeled by two different ways. The first one was the presence of polar solvents which perturb the energy levels of anionic systems by changing the effective potential surface and the second one was allowing the fluctuation of the well depth randomly to mimic the system in a more realistic view point. The average detachment rate constant is calculated as a function of important parameters of the used light field to explain the effects of solvent field on the dynamical behavior of dipole bound anionic system at least in a qualitative way.展开更多
文摘Photo dissociation dynamics of diatomic molecular ion HBr+ interacting with ultra fast laser pulses of different envelop function has been presented both in zero and non zero temperature environment. The calculations pertain primarily to the ground electronic state of the molecular ion HBr+. The used potential of HBr+ is calibrated with the help of the ab initio theoretical calculation at the CCSD/6-311++G(3df, 2pd) level and then fitted with appropriate Morse parameters. The numerical bound states vibrational eigenvalues obtained by the time independent Fourier Grid Hamiltonian method have been compared with analytical values of the fitted Morse potential. The effect of temperature, pulse envelops function, and light intensity on the dissociation process has been explored.
文摘A two dimensional model approach for the photodetachment dynamics of closed shell an-ionic systems in presence of external light field have been proposed in the context of polar environmental media. The effects of strong coupling between the solvent polarization and the extra charge in the system were studied by a simple model. The electronic states of con-cerned halide ions are represented by a two dimensional model Hamiltonian with a potential V(x,y)=-V0e^-σ(x^2+y^2). The time dependent Fourier grid Hamiltonian method have been used to follow the detachment process with fairly high intensities of light. The environmental effects on the dynamics are sought to be modeled by two different ways. The first one was the presence of polar solvents which perturb the energy levels of anionic systems by changing the effective potential surface and the second one was allowing the fluctuation of the well depth randomly to mimic the system in a more realistic view point. The average detachment rate constant is calculated as a function of important parameters of the used light field to explain the effects of solvent field on the dynamical behavior of dipole bound anionic system at least in a qualitative way.