期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancing water-dissociation kinetics and optimizing intermediates adsorption free energy of cobalt phosphide via high-valence Zr incorporating for alkaline water electrolysis 被引量:1
1
作者 Huafeng Fan Dongxu Jiao +6 位作者 Jinchang Fan Dewen Wang bilal zaman Wei Zhang Lei Zhang Weitao Zheng Xiaoqiang Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期119-127,I0005,共10页
Developing high-efficiency electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is required to enhance the sluggish kinetics of water dissociation and optimize the adsorption free e... Developing high-efficiency electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is required to enhance the sluggish kinetics of water dissociation and optimize the adsorption free energy of reaction intermediates.Herein,we tackle this challenge by incorporating high-valence Zr into CoP(ZrxCo_(1-x)P),which significantly accelerates the elementary steps of water electrolysis.Theoretical calculations indicate that the appropriate Zr incorporation effectively expedites the sluggish H2O dissociation kinetics and optimizes the adsorption energy of reaction intermediates for boosting the alkaline water electrolysis.These are confirmed by the experimental results of Zr_(0.06)Co_(0.94)P catalyst that delivers exceptional electrochemical activity.The overpotentials at the current density of 10 mA cm^(-2)(j10) are only 62(HER) and 240 mV(OER) in alkaline media.Furthermore,the Zr_(0.06)Co_(0.94)P/CC‖Zr_(0.06)Co_(0.94)P/CC system exhibits superior overall water splitting activity(1.53 V/j10),surpassing most of the reported bifunctional catalysts.This high-valence Zr incorporation and material design methods explore new avenues for realizing high-performance non-noble metal electrocatalysts. 展开更多
关键词 DFT simulation Water electrolysis Cobalt phosphide High-valence Zr
下载PDF
Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis
2
作者 Huafeng Fan Dongxu Jiao +6 位作者 Jinchang Fan Dewen Wang bilal zaman Wei Zhang Lei Zhang Weitao Zheng Xiaoqiang Cui 《Nano Research》 SCIE EI CSCD 2024年第3期1199-1208,共10页
Designing high-performance electrocatalysts toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to reduce the activation barrier and optimize free adsorption energy of reactive interm... Designing high-performance electrocatalysts toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to reduce the activation barrier and optimize free adsorption energy of reactive intermediates.Herein,we report that incorporating high-valence Cr into NiSe_(2)(Cr_(x)Ni_(1-x)Se_(2))kinetically and thermodynamically expedites elementary steps of both HER and OER.The as-prepared Cr_(0.05)Ni_(0.95)Se_(2) catalyst displays excellent HER and OER activities,with low overpotentials of 89 and 272 mV at the current density of 10 mA·cm^(-2)(j10),respectively,and remains stable during operation for 30 h.A low cell voltage of only 1.59 V is required to drive j10 in alkaline media.In situ Raman spectroscopy reveals that Cr incorporation facilitates the formation of NiOOH active species during the OER process.Meanwhile,theoretical explorations demonstrate that high-valence Cr incorporation efficiently accelerates water dissociation kinetics and improves H*adsorption during HER process,lowering the activation barrier of OER and optimizing the adsorption energy of oxygen-based intermediate,thus kinetically and thermodynamically enhancing the intrinsic performance of NiSe_(2) for over water splitting.This strategy provides a new horizon to design transition metal based electrocatalysts in the clean energy field. 展开更多
关键词 nickel selenide electrocatalytic water splitting high-valence Cr density functional theory(DFT)calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部