期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自然灾害与环境灾难
1
作者 bimal kanti paul 阎秀兰 《国外科技新书评介》 2012年第4期4-5,共2页
2004年印度洋海啸,2005年飓风卡特里娜、克什米尔大地震,2007年特强气旋风暴锡德……近些年来,发生在我们身边的这些震惊世界的自然灾难给全人类敲响了警钟,人们不禁开始疑问:我们的地球到底怎么了?环境问题是当今社会面临的最严... 2004年印度洋海啸,2005年飓风卡特里娜、克什米尔大地震,2007年特强气旋风暴锡德……近些年来,发生在我们身边的这些震惊世界的自然灾难给全人类敲响了警钟,人们不禁开始疑问:我们的地球到底怎么了?环境问题是当今社会面临的最严重问题之一,作为“生命支持系统”的人类的生存环境,无时无地不在制约着人类的生存与发展。无论对其自然变异引起的自然灾害,还是人类不合理活动引起的环境灾难,都应引起人们的重视。 展开更多
关键词 环境灾难 自然灾害 生命支持系统 克什米尔 自然灾难 环境问题 自然变异 人类
原文传递
Space‑Time Clustering with the Space‑Time Permutation Model in SaTScan™ Applied to Building Permit Data Following the 2011 Joplin, Missouri Tornado
2
作者 Mitchel Stimers Sisira Lenagala +2 位作者 Brandon Haddock bimal kanti paul Rhett Mohler 《International Journal of Disaster Risk Science》 SCIE CSCD 2022年第6期962-973,共12页
Community recovery from a major natural hazard-related disaster can be a long process, and rebuilding likely does not occur uniformly across space and time. Spatial and temporal clustering may be evident in certain da... Community recovery from a major natural hazard-related disaster can be a long process, and rebuilding likely does not occur uniformly across space and time. Spatial and temporal clustering may be evident in certain data types that can be used to frame the progress of recovery following a disaster. Publically available building permit data from the city of Joplin, Missouri, were gathered for four permit types, including residential, commercial, roof repair, and demolition. The data were used to(1) compare the observed versus expected frequency(chi-square) of permit issuance before and after the EF5 2011 tornado;(2), determine if significant space-time clusters of permits existed using the SaTScan^(TM) cluster analysis program(version 9.7);and(3) fit any emergent cluster data to the widely-cited Kates 10-year recovery model. All permit types showed significant increases in issuance for at least 5 years following the event,and one(residential) showed significance for nine of the 10years. The cluster analysis revealed a total of 16 significant clusters across the 2011 damage area. The results of fitting the significant cluster data to the Kates model revealed that those data closely followed the model, with some variation in the residential permit data path. 展开更多
关键词 Joplin tornado Space-time clustering Space-time permutation model SaTScan™ Building permit data Tornado recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部