Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s...Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.展开更多
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ...Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.展开更多
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological char...BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological characteristics of gastric mucosal tumors with different differentiation degrees and the influencing factors of long-term ESD efficacy may have certain significance for revealing the development of gastric cancer and ESD.AIM To analyze the features of gastric mucosal tumors at different differentiation levels,and to explore the prognostic factors of ESD.METHODS We retrospectively studied 301 lesions in 285 patients at The Second Affiliated Hospital of Xi'an Jiaotong University from 2014 to 2021,according to the latest Japanese guidelines(sixth edition),and divided them into low-grade intrae-pithelial neoplasia(LGIN),high-grade intraepithelial neoplasia(HGIN),and computed tomography at 3,6 and 12 months after ESD.We compared clinicopathologic characteristics,ESD efficacy,and complications with different degrees of differentiation,and analyzed the related factors associated with ESD.RESULTS HGIN and differentiated carcinoma patients were significantly older compared with LGIN patients(P<0.001)and accounted for more 0-IIc(P<0.001),atrophic gastritis was common(P<0.001),and irregular microvascular patterns(IMVPs)and demarcation lines(DLs)were more obvious(P<0.001).There was more infiltration in the undifferentiated carcinoma tissue(P<0.001),more abnormal folds and poorer mucosal peristalsis(P<0.001),and more obvious IMVPs,irregular microsurface patterns and DLs(P<0.05)than in the LGIN and HGIN tissues.The disease-free survival rates at 2,5,and 8 years after ESD were 95.0%,90.1%,and 86.9%,respectively.Undifferen-tiated lesions(HR 5.066),white moss(HR 7.187),incomplete resection(HR 3.658),and multiple primary cancers(HR 2.462)were significantly associated with poor prognosis.CONCLUSION Differentiations of gastric mucosal tumors have different epidemiological and endoscopic characteristics,which are closely related to the safety and efficacy of ESD.展开更多
Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and...Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.展开更多
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the...The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.展开更多
Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reactio...Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reaction of their active sites with large-sized anions.Herein,we demonstrate the application of a small molecule with rigid spirofluorene structu re,namely 2,2’,7,7’-tetrakis(diphenylamine)-9,9’-spirobifluorene(Spiro-TAD),as a cathode material for lithium dual-ion batteries.The inherent sterical structure endows the Spiro-TAD with good chemical stability and large internal space for fast diffusion kinetics of anions in the organic electrolyte.As a result,the Spiro-TAD electrode shows significant insolubility and less steric hindrance,and gives a high actual capacity of 109 mA h g^(-1)(active groups utilization ratio approximately 100%) at 50 mA g^(-1)with a high discharge voltage of 3.6 V(vs.Li+/Li),excellent rate capability(60 mA h g^(-1)at 2000 mA g^(-1)) and extremely stable cycling life(98.4% capacity retention after 1400 cycles at 500 mA g^(-1)) in half cells.Such good electrochemical performance is attributed to the robust and rapid adsorption/desorption of ClO4-anions,which can be proved by the in-situ FTIR and XPS.Moreover,an all-organic lithium dual-ion battery(a-OLDIBs) is constructed using the Spiro-TAD as cathode and 3,4,9,10-Perylenetetracarboxylic diimide(PTCDI) as anode and displays long-term cycling performance of 87.5 mA h g^(-1)after 800 cycles.This study will stimulate further developments in designing all organic battery systems.展开更多
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters...Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,展开更多
Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave i...Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.展开更多
AIM: To investigate the expression of gastrokine 1 (GKN1) in normal gastric mucosa, precancerous lesions and gastric cancer tissues, and to analyse its correlations with tumour site and pathological pattern.
Amphotericin B(AmB)is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections.Recent studies on the liposomal drug product have shed light on the AmB agg...Amphotericin B(AmB)is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections.Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer,which heat treatment(curing)modifies.Although toxicity was found related to aggregation status-loose aggregates significantly more toxic than tight aggregates-the precise mechanism linking aggregation and toxicitywas notwell understood.This study directlymeasured drug release rate fromvarious AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state,drug release,and in vitro toxicity.UV–Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features:a∼25nm blue-shift of the main absorption peak(λ_(max))in aqueous buffer and a decrease in the OD_(346)/OD_(322) ratio upon thermal curing,reflecting tighter aggregation.In vitro release testing(IVRT)data showed,by applying and fitting first-order release kinetic models for one or two pools,that curing impacts two significant changes:a 3–5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated,more thermodynamically stable drug pool.The kinetic data thus corroborated the trend independently deduced from the UV–Vis spectral data.The in vitro toxicity assay indicated a decreased toxicity with curing,as shown by the significantly increased concentration,causing half-maximal potassium release(TC50).The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation.This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release(directly measured rate constants),providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.展开更多
A proton therapy(PT)facility with multiple treatment rooms based on the superconducting cyclotron scheme is under development at Huazhong University of Science and Technology(HUST).This paper attempts to describe the ...A proton therapy(PT)facility with multiple treatment rooms based on the superconducting cyclotron scheme is under development at Huazhong University of Science and Technology(HUST).This paper attempts to describe the design considerations and implementation of the PT beamline from a systematic viewpoint.Design considerations covering beam optics and the influence of high-order aberrations,beam energy/intensity modulation,and beam orbit correction are described.In addition to the technical implementation of the main beamline components and subsystems,including the energy degrader,fast kicker,beamline magnets,beam diagnostic system,and beamline control system are introduced.展开更多
The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin ...The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin 1, 4 mRNA expression in brain edema tissue, then inhibited their synthesis in the striatum, in particular at the early stage of ischemia (at 8 hours after pMCAO), inhibited glial fibrillary acidic protein expression, and lightened reactive gliosis. These data sug-gest that bilobalide attenuates brain edema formation due to reduced expression of aquaporins.展开更多
The oxidative condensation between renewable furfural and fatty alcohols is a crucial avenue for producing high-quality liquid fuels and valuable furan derivatives.The selectivity control in this reaction process rema...The oxidative condensation between renewable furfural and fatty alcohols is a crucial avenue for producing high-quality liquid fuels and valuable furan derivatives.The selectivity control in this reaction process remains a significant challenge.Herein,we report the strategy of confining well dispersed gold species within ZSM-5 structure to construct highly active Au@ZSM-5 zeolite catalysts for the oxidative condensation of furfural.Characterization results and spectroscopy analyses demonstrate the efficient encapsulation of isolated and cationic Au clusters in zeolite structure.Au@ZSM-5(K)catalyst shows remarkable performance with 69.7%furfural conversion and 90.2%furan-2-acrolein selectivity as well as good recycle stability.It is revealed that the microstructure of ZSM-5 zeolite can significantly promote oxidative condensation activity through confinement effects.This work presents an explicit example of constructing zeolite encaged noble metal catalysts toward targeted chemical transformations.展开更多
钠离子电池作为新型的储能电池体系因钠资源储量丰富、成本低廉等优势有望填补锂离子电池在某些应用领域的空缺,非常适用于大规模储能领域.然而,高容量储钠负极材料仍然需要进一步研究.本文以废旧铅酸电池的回收铅和商业化硒粉为原料,...钠离子电池作为新型的储能电池体系因钠资源储量丰富、成本低廉等优势有望填补锂离子电池在某些应用领域的空缺,非常适用于大规模储能领域.然而,高容量储钠负极材料仍然需要进一步研究.本文以废旧铅酸电池的回收铅和商业化硒粉为原料,采用机械球磨法制备了纳米硒化铅与碳纳米管(PbSe@CNTs)的复合材料.碳纳米管网络缠绕在PbSe纳米粒子上,可有效抑制纳米粒子的团聚,同时提高了电子导电性.纳米级的PbSe和拓扑结构的CNTs有利于电解液的渗透,缩短了Na+和电子的传输路径,缓解了脱嵌钠过程中的机械应变,提高了倍率和长循环稳定性能.PbSe@CNTs电极在20 mA g^(-1)电流密度下具有597 mA h g^(-1)的可逆比容量,在100 m A g^(-1)循环100圈仍保持458.9 mA h g^(-1)的可逆比容量,容量保持率为88%.通过X射线衍射和拉曼光谱分析,证实了PbSe的储钠机理为两步转化-合金化过程,反应方程式为PbSe+5.75Na++5.75e-?0.25Na15Pb4+Na2Se.展开更多
Alkene hydroformylation is an extremely important industry process currently accomplished via homogeneous catalysis.Heterogeneous hydroformylation is being avidly pursued as a more economical and sustainable process.H...Alkene hydroformylation is an extremely important industry process currently accomplished via homogeneous catalysis.Heterogeneous hydroformylation is being avidly pursued as a more economical and sustainable process.Herein,we report the construction of zeolite-encaged rhodium catalyst for efficient hydroformylation.Through a facile in situ hydrothermal strategy,isolated Rh^(δ+)(δ=2.5)can be encaged in faujasite and efficiently stabilized via interaction with framework oxygen atoms,producing a Rh@Y model catalyst with well-defined rhodium sites and coordination environment.Rh@Y exhibits high catalytic activity,perfect chemoselectivity,and recyclability in 1-hexene hydroformylation under mild reaction conditions,making it a robust heterogeneous catalyst for potential applications.A state-of-the-art turnover frequency value of 6567 molC=C/molRh/h for Rh@Y can be achieved in 1-hexene hydroformylation at 393 K,outperforming all heterogeneous catalysts and most homogeneous catalysts under comparable conditions.With the well-defined structure of Rh@Y,the detailed mechanism of alkene hydroformylation can be interpreted via theoretical calculations,and the advantages of heterogeneous hydroformylation are well explained.This work provides a promising solution toward efficient heterogeneous noble metal catalysis by encaging stable isolated ions in a zeolite matrix.展开更多
The application of superconducting(SC)technology enables magnets to excite strong fields with small footprints,which has great potential for miniaturizing proton therapy gantries.However,the slow ramping rate of SC ma...The application of superconducting(SC)technology enables magnets to excite strong fields with small footprints,which has great potential for miniaturizing proton therapy gantries.However,the slow ramping rate of SC magnets results in a low treatment efficiency compared with normal-conducting(NC)gantries.To address this problem,this study proposes a compact proton therapy gantry design with a large momentum acceptance utilizing alternating-gradient canted-cosine-theta(AG-CCT)SC magnets.In our design,a high-transmission degrader is mounted in the middle of the gantry,and the upstream beamline employs NC magnets with small apertures.Downstream of the degrader,large-bore AG-CCT magnets with strong alternating focusing gradients are set symmetrically as a local achromat,which realizes a momentum acceptance of 20%(or 40%in the energy domain).Therefore,only three magnetic working points are required to cover a treatment energy of 70-230 Me V.Owing to the large momentum acceptance,the proton beam after the degrader can be directly delivered to the isocenter without truncating its energy spectrum,which can significantly increase the treatment efficiency but causes severe dispersion effects during pencil beam scanning.Therefore,a compensation method was introduced by tuning the normal and skewed quadrupoles during the scanning process.As a result,the new gantry not only presents a remarkable reduction in the size and weight of the facility but also shows good potential for fast treatment.展开更多
文摘Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.
基金supported by the National Nature Science Foundation of China,the National Key Research and Development Program of China(302001109,2016YFD0300508,2017YFD0301602,2018YFD0301105)the Fujian and Taiwan Cultivation Resources Development and Green Cultivation Coordination Innovation Center,China(Fujian 2011 Project,2015-75)the Natural Science Foundation of Fujian Province,China(2022J01142)。
文摘Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.
基金Supported by Development Program of Shaanxi Province,No.2021SF-221.
文摘BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological characteristics of gastric mucosal tumors with different differentiation degrees and the influencing factors of long-term ESD efficacy may have certain significance for revealing the development of gastric cancer and ESD.AIM To analyze the features of gastric mucosal tumors at different differentiation levels,and to explore the prognostic factors of ESD.METHODS We retrospectively studied 301 lesions in 285 patients at The Second Affiliated Hospital of Xi'an Jiaotong University from 2014 to 2021,according to the latest Japanese guidelines(sixth edition),and divided them into low-grade intrae-pithelial neoplasia(LGIN),high-grade intraepithelial neoplasia(HGIN),and computed tomography at 3,6 and 12 months after ESD.We compared clinicopathologic characteristics,ESD efficacy,and complications with different degrees of differentiation,and analyzed the related factors associated with ESD.RESULTS HGIN and differentiated carcinoma patients were significantly older compared with LGIN patients(P<0.001)and accounted for more 0-IIc(P<0.001),atrophic gastritis was common(P<0.001),and irregular microvascular patterns(IMVPs)and demarcation lines(DLs)were more obvious(P<0.001).There was more infiltration in the undifferentiated carcinoma tissue(P<0.001),more abnormal folds and poorer mucosal peristalsis(P<0.001),and more obvious IMVPs,irregular microsurface patterns and DLs(P<0.05)than in the LGIN and HGIN tissues.The disease-free survival rates at 2,5,and 8 years after ESD were 95.0%,90.1%,and 86.9%,respectively.Undifferen-tiated lesions(HR 5.066),white moss(HR 7.187),incomplete resection(HR 3.658),and multiple primary cancers(HR 2.462)were significantly associated with poor prognosis.CONCLUSION Differentiations of gastric mucosal tumors have different epidemiological and endoscopic characteristics,which are closely related to the safety and efficacy of ESD.
基金The support from the National Natural Science Foundation of China(No.51971083)the Natural Science Foundation of Heilongjiang Province,China(YQ 2020E007)is gratefully acknowledgedfinancially sponsored by Heilongjiang Touyan Team Program.
文摘Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.
基金supported by the National Natural Science Foundation of China(Grant No.11872215)the National Defense Basic Scientific Research program of China(Grant No.JCKYS2019209C001)the Fundamental Strengthening Program of the Military Science and Technology Commission Technical Field Foundation(2020-JCJQ-JJ-403).
文摘The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.
基金supported by the National Natural Science Foundation of China (21905205 and 22109037)the Natural Science Foundation of Tianjin City (20JCYBJC00380)+1 种基金the Advanced Talents Incubation Program of Hebei University (521000981408)the Haihe Laboratory of Sustainable Chemical Transformations(YYJC202110)。
文摘Redox p-type organic compounds are promising cathode materials for dual-ion batteries.However,the triphenylamine-based polymers usually with agglomerate and intertwined molecular chain nature limit the maximum reaction of their active sites with large-sized anions.Herein,we demonstrate the application of a small molecule with rigid spirofluorene structu re,namely 2,2’,7,7’-tetrakis(diphenylamine)-9,9’-spirobifluorene(Spiro-TAD),as a cathode material for lithium dual-ion batteries.The inherent sterical structure endows the Spiro-TAD with good chemical stability and large internal space for fast diffusion kinetics of anions in the organic electrolyte.As a result,the Spiro-TAD electrode shows significant insolubility and less steric hindrance,and gives a high actual capacity of 109 mA h g^(-1)(active groups utilization ratio approximately 100%) at 50 mA g^(-1)with a high discharge voltage of 3.6 V(vs.Li+/Li),excellent rate capability(60 mA h g^(-1)at 2000 mA g^(-1)) and extremely stable cycling life(98.4% capacity retention after 1400 cycles at 500 mA g^(-1)) in half cells.Such good electrochemical performance is attributed to the robust and rapid adsorption/desorption of ClO4-anions,which can be proved by the in-situ FTIR and XPS.Moreover,an all-organic lithium dual-ion battery(a-OLDIBs) is constructed using the Spiro-TAD as cathode and 3,4,9,10-Perylenetetracarboxylic diimide(PTCDI) as anode and displays long-term cycling performance of 87.5 mA h g^(-1)after 800 cycles.This study will stimulate further developments in designing all organic battery systems.
文摘Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,
基金supported by the National Basic Scientific Research Project(Grant NO.JCKYS2019209C001)National Key Research and Development Program of China(Grant NO.2017YFC0822301&Grant NO.2018YFC0807206)National Natural Science Foundation of China(Grant NO.11772303)。
文摘Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.
文摘AIM: To investigate the expression of gastrokine 1 (GKN1) in normal gastric mucosa, precancerous lesions and gastric cancer tissues, and to analyse its correlations with tumour site and pathological pattern.
基金financially supported by the Offi ce of Research and Standards, Office of Generic Drugs, CDER at the FDA (75F40120C00055)
文摘Amphotericin B(AmB)is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections.Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer,which heat treatment(curing)modifies.Although toxicity was found related to aggregation status-loose aggregates significantly more toxic than tight aggregates-the precise mechanism linking aggregation and toxicitywas notwell understood.This study directlymeasured drug release rate fromvarious AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state,drug release,and in vitro toxicity.UV–Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features:a∼25nm blue-shift of the main absorption peak(λ_(max))in aqueous buffer and a decrease in the OD_(346)/OD_(322) ratio upon thermal curing,reflecting tighter aggregation.In vitro release testing(IVRT)data showed,by applying and fitting first-order release kinetic models for one or two pools,that curing impacts two significant changes:a 3–5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated,more thermodynamically stable drug pool.The kinetic data thus corroborated the trend independently deduced from the UV–Vis spectral data.The in vitro toxicity assay indicated a decreased toxicity with curing,as shown by the significantly increased concentration,causing half-maximal potassium release(TC50).The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation.This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release(directly measured rate constants),providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.
基金the National Key Research and Development Program of China(No.2016YFC0105305)the National Natural Science Foundation of China(11975107)the Program for HUST Academic Frontier Youth Team.
文摘A proton therapy(PT)facility with multiple treatment rooms based on the superconducting cyclotron scheme is under development at Huazhong University of Science and Technology(HUST).This paper attempts to describe the design considerations and implementation of the PT beamline from a systematic viewpoint.Design considerations covering beam optics and the influence of high-order aberrations,beam energy/intensity modulation,and beam orbit correction are described.In addition to the technical implementation of the main beamline components and subsystems,including the energy degrader,fast kicker,beamline magnets,beam diagnostic system,and beamline control system are introduced.
基金a Research Subject of General Hospital of Shenyang Military Area Command of Chinese PLA
文摘The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin 1, 4 mRNA expression in brain edema tissue, then inhibited their synthesis in the striatum, in particular at the early stage of ischemia (at 8 hours after pMCAO), inhibited glial fibrillary acidic protein expression, and lightened reactive gliosis. These data sug-gest that bilobalide attenuates brain edema formation due to reduced expression of aquaporins.
基金supported by the National Natural Science Fund of China(Grant Nos.22025203 and 22121005).
文摘The oxidative condensation between renewable furfural and fatty alcohols is a crucial avenue for producing high-quality liquid fuels and valuable furan derivatives.The selectivity control in this reaction process remains a significant challenge.Herein,we report the strategy of confining well dispersed gold species within ZSM-5 structure to construct highly active Au@ZSM-5 zeolite catalysts for the oxidative condensation of furfural.Characterization results and spectroscopy analyses demonstrate the efficient encapsulation of isolated and cationic Au clusters in zeolite structure.Au@ZSM-5(K)catalyst shows remarkable performance with 69.7%furfural conversion and 90.2%furan-2-acrolein selectivity as well as good recycle stability.It is revealed that the microstructure of ZSM-5 zeolite can significantly promote oxidative condensation activity through confinement effects.This work presents an explicit example of constructing zeolite encaged noble metal catalysts toward targeted chemical transformations.
基金supported by the National Natural Science Foundation of China (22109037)the Natural Science Foundation of Hebei Province (B2020201001)+2 种基金the Advanced Talents Incubation Program of Hebei University (521000981408)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)the Research Innovation Team of the College of Chemistry and Environmental Science of Hebei University (hxkytd2102)。
文摘钠离子电池作为新型的储能电池体系因钠资源储量丰富、成本低廉等优势有望填补锂离子电池在某些应用领域的空缺,非常适用于大规模储能领域.然而,高容量储钠负极材料仍然需要进一步研究.本文以废旧铅酸电池的回收铅和商业化硒粉为原料,采用机械球磨法制备了纳米硒化铅与碳纳米管(PbSe@CNTs)的复合材料.碳纳米管网络缠绕在PbSe纳米粒子上,可有效抑制纳米粒子的团聚,同时提高了电子导电性.纳米级的PbSe和拓扑结构的CNTs有利于电解液的渗透,缩短了Na+和电子的传输路径,缓解了脱嵌钠过程中的机械应变,提高了倍率和长循环稳定性能.PbSe@CNTs电极在20 mA g^(-1)电流密度下具有597 mA h g^(-1)的可逆比容量,在100 m A g^(-1)循环100圈仍保持458.9 mA h g^(-1)的可逆比容量,容量保持率为88%.通过X射线衍射和拉曼光谱分析,证实了PbSe的储钠机理为两步转化-合金化过程,反应方程式为PbSe+5.75Na++5.75e-?0.25Na15Pb4+Na2Se.
基金This work was supported by the National Natural Science Fund of China(grant nos.21872072 and 22025203)the Frontiers Science Center for New Organic Matter,Nankai University(grant no.63181206)Haihe Laboratory of Sustainable Chemical Transformations,Tianjin.
文摘Alkene hydroformylation is an extremely important industry process currently accomplished via homogeneous catalysis.Heterogeneous hydroformylation is being avidly pursued as a more economical and sustainable process.Herein,we report the construction of zeolite-encaged rhodium catalyst for efficient hydroformylation.Through a facile in situ hydrothermal strategy,isolated Rh^(δ+)(δ=2.5)can be encaged in faujasite and efficiently stabilized via interaction with framework oxygen atoms,producing a Rh@Y model catalyst with well-defined rhodium sites and coordination environment.Rh@Y exhibits high catalytic activity,perfect chemoselectivity,and recyclability in 1-hexene hydroformylation under mild reaction conditions,making it a robust heterogeneous catalyst for potential applications.A state-of-the-art turnover frequency value of 6567 molC=C/molRh/h for Rh@Y can be achieved in 1-hexene hydroformylation at 393 K,outperforming all heterogeneous catalysts and most homogeneous catalysts under comparable conditions.With the well-defined structure of Rh@Y,the detailed mechanism of alkene hydroformylation can be interpreted via theoretical calculations,and the advantages of heterogeneous hydroformylation are well explained.This work provides a promising solution toward efficient heterogeneous noble metal catalysis by encaging stable isolated ions in a zeolite matrix.
基金supported by the National Natural Science Foundation of China(No.11975107,12205111)。
文摘The application of superconducting(SC)technology enables magnets to excite strong fields with small footprints,which has great potential for miniaturizing proton therapy gantries.However,the slow ramping rate of SC magnets results in a low treatment efficiency compared with normal-conducting(NC)gantries.To address this problem,this study proposes a compact proton therapy gantry design with a large momentum acceptance utilizing alternating-gradient canted-cosine-theta(AG-CCT)SC magnets.In our design,a high-transmission degrader is mounted in the middle of the gantry,and the upstream beamline employs NC magnets with small apertures.Downstream of the degrader,large-bore AG-CCT magnets with strong alternating focusing gradients are set symmetrically as a local achromat,which realizes a momentum acceptance of 20%(or 40%in the energy domain).Therefore,only three magnetic working points are required to cover a treatment energy of 70-230 Me V.Owing to the large momentum acceptance,the proton beam after the degrader can be directly delivered to the isocenter without truncating its energy spectrum,which can significantly increase the treatment efficiency but causes severe dispersion effects during pencil beam scanning.Therefore,a compensation method was introduced by tuning the normal and skewed quadrupoles during the scanning process.As a result,the new gantry not only presents a remarkable reduction in the size and weight of the facility but also shows good potential for fast treatment.