Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricult...Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.展开更多
Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-or...Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.展开更多
The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is o...The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.展开更多
Pattern division multiple access(PDMA),which is a novel non-orthogonal multiple access(NOMA),has been proposed to address the challenges of massive connectivity and higher spectral efficiency for fifth generation(5G) ...Pattern division multiple access(PDMA),which is a novel non-orthogonal multiple access(NOMA),has been proposed to address the challenges of massive connectivity and higher spectral efficiency for fifth generation(5G) mobile network.The performance of PDMA mainly depends on the design of PDMA pattern matrix.In this paper,pattern matrix design of PDMA for 5G uplink(UL) applications in massive machine type communication(mMTC) and enhanced mobile broadband(eMBB) deployment scenarios are studied.The design criteria and examples for application in UL mMTC and UL eMBB are investigated.The performance of the PDMA pattern matrix is analyzed with the discrete constellation constrained capacity(CC-Capacity),and verified by Monte Carlo simulation.The simulation results show that the preferred PDMA pattern matrix can achieve good performance with different overloading factors(OF).展开更多
Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this prob- lem...Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this prob- lem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is pro- posed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The chan- ges of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantlyaffected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
In this paper,we propose an improved torque sensorless speed control method for electric assisted bicycle,this method considers the coordinate conversion.A low-pass filter is designed in disturbance observer to estima...In this paper,we propose an improved torque sensorless speed control method for electric assisted bicycle,this method considers the coordinate conversion.A low-pass filter is designed in disturbance observer to estimate and compensate the variable disturbance during cycling.A DC motor provides assisted power driving,the assistance method is based on the realtime wheel angular velocity and coordinate system transformation.The effect of observer is proved,and the proposed method guarantees stability under disturbances.It is also compared to the existing methods and their performances are illustrated through simulations.The proposed method improves the performance both in rapidity and stability.展开更多
In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent ...In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules.展开更多
Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-tempera...Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-temperature pyrolysis results in a significant increase of electrical and dielectric proper-ties of the ceramics,causing extensive reflection of EMW.To address this challenge,boron nitride-coated carbon nanotubes(BN@CNTs)were fabricated and introduced into polymer-derived SiC(PDC-SiC)by py-rolyzing its precursor higher than 1200℃to form SiC-BN@CNT ceramic composites.The fabricated com-posites with 3 wt.%BN@CNTs pyrolyzed at 1200℃have an effective absorption bandwidth(EAB)of 4.2 GHz(8.2-12.4 GHz)at a thickness of 3.4 mm and the minimum reflection loss(RL min)of-57.20 dB.The ultra-broad EAB of 12.62 GHz(5.38-18 GHz)is obtained by simulation through periodic structure design-ing.The RL of the metamaterials was also measured using an arch testing method at a frequency range of 2-18 GHz and an EAB of 11.52 GHz(6.48-18 GHz)is obtained.The excellent absorption is attributed to the BN layer that limits the electrical conduction of the ceramic composites while retaining the high loss of CNTs.The introduction of BN@CNTs causes the refinement of SiC grains,which provides plenty of interfaces and enhances the interface polarization loss.This work successfully solves the problem that PDCs pyrolyzed at elevated temperatures cannot be used as EMW absorption materials by applying BN coating on CNTs served as absorbers for PDC-SiC.The results of this work greatly broaden the application scope of the PDC systems for EMW absorption.展开更多
The metallic plasmonic array that can support both propagating surface plasmon polaritons(PSPPs)and localized surface plasmon resonance(LSPR)possesses rich optical properties and remarkable optical performance,making ...The metallic plasmonic array that can support both propagating surface plasmon polaritons(PSPPs)and localized surface plasmon resonance(LSPR)possesses rich optical properties and remarkable optical performance,making it a powerful platform for applications in photonics,chemistry,and materials.For practical applications,the excitation spot is usually smaller than the area of metal arrays.It is thus imperative to address“how many array units are enough?”towards a rational design of plasmonic nanostructures.Herein,we employed focused ion beam(FIB)to precisely fabricate a series of plasmonic array structures with increased unit number.By utilizing photoluminescence(PL)and surface-enhanced Raman spectroscopy(SERS),we found that the array units outside the excitation spot still have a significant impact on the optical response within the spot.Combined with the numerical simulation,we found that the boundary of the finite array leads to the loss of PSPP outside the excitation point,which subsequently affects the coupling of PSPP and LSPR in the excitation spot,leading to variations in PL and SERS intensity.Based on the findings,we further tuned the LSPR mode of the metal arrays by electrodeposition to obtain strong near-field enhancement without any influence on the PSPP mode.This work advances the understanding of near-field and far-field optical behavior in finite-size array structures and provides guidance for designing highly-efficient photonic devices.展开更多
Dear Editor,Crop genetic diversity and elite agronomic traits are mainly caused by genetic variants,approximately half of which are single-nucleotide polymorphisms.Precise nucleotide substitution through CRISPR–Cas-m...Dear Editor,Crop genetic diversity and elite agronomic traits are mainly caused by genetic variants,approximately half of which are single-nucleotide polymorphisms.Precise nucleotide substitution through CRISPR–Cas-mediated base editors has been widely used to correct defective alleles and create novel alleles by artificial evolution for rapid crop genetic improvement.Since 2017,cytosine base editors(CBEs)and adenine base editors(ABEs)have been successively developed in many plant species and have been continuously optimized to generate highly efficient C-to-T and A-to-G transitions,as well as by-product C-to-A/G conversion with low efficiency(Ren et al.,2018;Yan et al.,2021).展开更多
The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK...The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK^(+)mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification.Moreover,the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals.Based on these advantages,the detection efficiency for the proton decay via p→νK^(+)is 36.9%±4.9%with a background level of 0.2±0.05(syst)±0.2(stat)events after 10 years of data collection.The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 years,which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies.展开更多
Gene-targeting technologies using sequence specific nucleases have been widely adopted to induce genetic modifications in both plant molecular biology research and crop improvement,of which generating targeted point m...Gene-targeting technologies using sequence specific nucleases have been widely adopted to induce genetic modifications in both plant molecular biology research and crop improvement,of which generating targeted point mutation for gain-of-function phenotype is of great value.展开更多
Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms con...Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms containing im portant gain-of-function genetic variations.How ever,to engineer target genes with unknown functional SNPs remains challenging.To address this issue,we present here abase-e diting-mediated gene evolution(BEMGE)m ethod,employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA(sgRNA)library tiling the full-length coding region,for developing novel rice germ plasm swith mutations in any endogenous gene.To this end,OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bom bardment-mediated transform ation.Four different types of amino acid substitutions in the evolved OsALS1,derived from two sites that have never been targeted by natural or human selection during rice dom estication,were identified,conferring varying levels of tolerance to the herbicide bispyribac-sodium.Furtherm ore,the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing w ith the corresponding base editor and sgRNA.Collectively,these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.展开更多
CRISPR technologies enabling precise genome manipulation are valuable for gene function studies and molecular crop breeding. However, the requirement of a protospacer adjacent motif (PAM)y such as NGG and TTN, for Cas...CRISPR technologies enabling precise genome manipulation are valuable for gene function studies and molecular crop breeding. However, the requirement of a protospacer adjacent motif (PAM)y such as NGG and TTN, for Cas protein recognition restricts the selection of targetable genomic loci in practical applications of CRISPR technologies. Recently Cas9-NG, which recognizes a minimal NG PAM, was reported to expand the targeting space of genome editing in human cells, but it remains unclear whether this Cas9 variant can be used in plants. In this study, we evaluated the nuclease activity of Cas9-NG toward various NGN PAMs by targeting endogenous genes in transgenic rice. We found that Cas9-NG edits all NGG, NGA, NGT, and NGC sites with impaired activity, while the gene-edited plants were dominated by monoallelic mutations. Cas9-NG-engineered base editors were then developed and used to generate O s B Z R I gainof- function plants that can not be created by other available Cas9-engineered base editors. Moreover, we showed that a Cas9-NG-based transcriptional activator efficiently upregulated the expression of endogenous target genes in rice. In addition, we discovered that Cas9-NG recognizes NAC, NTG, NTT, and NCG apart from NG PAM. Together, these findings demonstrate that Cas9-NG can greatly expand the targeting scope of genome-editing tools, showing great potential for targeted genome editing, base editing, and genome regulation in plants.展开更多
Dear Editor The newly developed CRISPR/Cas9-mediated base editing technology with cytosine deaminase is capable of precisely and efficiently introducing point mutations at the target genomic locus, which does not requ...Dear Editor The newly developed CRISPR/Cas9-mediated base editing technology with cytosine deaminase is capable of precisely and efficiently introducing point mutations at the target genomic locus, which does not require double-stranded DNA breaks or any donor templates and thus exhibit a great potential for gene correction and genetic diversification in yeasts, plants, and mammalian and human cells (Komor et al., 2016; Nishida et al., 2016; Lu and Zhu, 2017; Ren et al., 2017).展开更多
Objective: To analyze the clinical epidemiological characteristics of patients with gallbladder carcinoma recruited from 17 hospitals in five northwestern provinces of China (Shaanxi Province, Gansu Province, Qinghai ...Objective: To analyze the clinical epidemiological characteristics of patients with gallbladder carcinoma recruited from 17 hospitals in five northwestern provinces of China (Shaanxi Province, Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and Xinjiang Uygur Autonomous Region) from 2009 to 2013, and to summarize the clinical diagnosis and treatment data of gallbladder carcinoma. Methods: Clinical information of 2379 patients with gallbladder carcinoma from 17 hospitals in five northwestern provinces of China was retrospectively collected and analyzed using the 'Questionnaire for Gallbladder Carcinoma Patients in Northwestern Area of China.' All information was verified with EpiData software and analyzed with SPSS 13.0 software. Results: (1) Gallbladder carcinoma accounted for 2.7% (2379/86,609) of all biliary tract diseases during the study period, which was significantly higher than that from 1986 to 1998 (P < 0.001). (2) Gallbladder carcinoma was more prone to occur in elderly women. The male:female incidence ratio was 1.0:2.1, the average age of onset of disease was 63.7 ± 11.3 years, and the incidence was higher in farmers than in other occupational groups. (3) A total of 57.2% (1360/2379) of patients with gallbladder carcinoma also had gallstones. (4) Abdominal pain (1796/2379, 75.5%) and jaundice (727/2379, 30.6%) were the most common clinical manifestations, 81.2% (1527/1881) were positive in those receiving B ultrasound examinations and 90.7% (1567/1727) were positive in those undergoing computed tomography, and 64.5% (1124/1742) of patients with gallbladder carcinoma were positive for carbohydrate antigen (CA) 19-9. (5) The pathological type of gallbladder carcinoma was mainly moderately and poorly differentiated adenocarcinoma with a high degree of malignancy. At admission, 55.1% (1091/1981) of patients had stage Ⅳ cancer among patients with TNM staging information; 55.9% (1331/2379) had lymphatic metastasis, 29.7% (706/2379) had bile duct metastasis, and 53.1% (1263/2379) had liver metastasis. (6) A total of 283 patients (283/2379, 11.9%) had incidentally detected gallbladder carcinoma. (7) The rate of radical surgical resection was 30.4% (723/2379). Conclusion: The proportion of gallbladder carcinoma in biliary tract diseases in the northwestern area of China was significantly higher from 2009 to 2013 than from 1986 to 1998. Gallbladder carcinoma was common in older women and mainly diagnosed at an advanced stage. Compared with other surveys in different regions, the rate of metastasis in this survey was high, leading to a low resection rate. Populations at high risk should undergo B-ultrasound examinations at regular follow-up intervals to increase the rate of early diagnosis of gallbladder carcinoma.展开更多
基金supported by grants from the Shenzhen Science and Technology Program(KQTD20180411143628272)Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(PT202101-02)+3 种基金the Hainan Yazhou Bay Seed Lab(B21HJ0215),the National Natural Science Foundation of China(32102294)the China National Postdoctoral Program for Innovative Talents(BX2020378)the China Postdoctoral Science Foundation(2020M672902)the Central Publicinterest Scientific Institution Basal Research Fund(Y2022PT24).
文摘Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.
基金supported by National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.
基金supported by the National High Technology Research and Development Program of China(863 Program,No. 2015AA01A709)
文摘Pattern division multiple access(PDMA),which is a novel non-orthogonal multiple access(NOMA),has been proposed to address the challenges of massive connectivity and higher spectral efficiency for fifth generation(5G) mobile network.The performance of PDMA mainly depends on the design of PDMA pattern matrix.In this paper,pattern matrix design of PDMA for 5G uplink(UL) applications in massive machine type communication(mMTC) and enhanced mobile broadband(eMBB) deployment scenarios are studied.The design criteria and examples for application in UL mMTC and UL eMBB are investigated.The performance of the PDMA pattern matrix is analyzed with the discrete constellation constrained capacity(CC-Capacity),and verified by Monte Carlo simulation.The simulation results show that the preferred PDMA pattern matrix can achieve good performance with different overloading factors(OF).
基金Supported by National Natural Science Foundation of China(Grant No.51205027)University Youth Fund of Beijing Wuzi University
文摘Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this prob- lem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is pro- posed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The chan- ges of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantlyaffected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.
基金supported by the National Natural Science Foundation of China(51775325)Hong Kong Scholars Program of China(XJ2013015)。
文摘In this paper,we propose an improved torque sensorless speed control method for electric assisted bicycle,this method considers the coordinate conversion.A low-pass filter is designed in disturbance observer to estimate and compensate the variable disturbance during cycling.A DC motor provides assisted power driving,the assistance method is based on the realtime wheel angular velocity and coordinate system transformation.The effect of observer is proved,and the proposed method guarantees stability under disturbances.It is also compared to the existing methods and their performances are illustrated through simulations.The proposed method improves the performance both in rapidity and stability.
基金Financial support by the National Natural Science Foundation of China (29833060 29903009+2 种基金 20073012) and Visiting Scholar Foundation in State Key Labs of Ministry of Education of China is gratefully acknowledged.
文摘In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules.
基金supported by the National Natural Science Foundation of China(Nos.52232005,52172104,and 52293370)Fundamental Research Funds for the Central Universities(China,Nos.3102020QD0411 and D5000220152)+1 种基金Fundamental Research Funds for the Central Universities(No.3102019TS0409)Cre-ative Research Foundation of Science and Technology on Thermo-Structural Composite Materials Laboratory.
文摘Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-temperature pyrolysis results in a significant increase of electrical and dielectric proper-ties of the ceramics,causing extensive reflection of EMW.To address this challenge,boron nitride-coated carbon nanotubes(BN@CNTs)were fabricated and introduced into polymer-derived SiC(PDC-SiC)by py-rolyzing its precursor higher than 1200℃to form SiC-BN@CNT ceramic composites.The fabricated com-posites with 3 wt.%BN@CNTs pyrolyzed at 1200℃have an effective absorption bandwidth(EAB)of 4.2 GHz(8.2-12.4 GHz)at a thickness of 3.4 mm and the minimum reflection loss(RL min)of-57.20 dB.The ultra-broad EAB of 12.62 GHz(5.38-18 GHz)is obtained by simulation through periodic structure design-ing.The RL of the metamaterials was also measured using an arch testing method at a frequency range of 2-18 GHz and an EAB of 11.52 GHz(6.48-18 GHz)is obtained.The excellent absorption is attributed to the BN layer that limits the electrical conduction of the ceramic composites while retaining the high loss of CNTs.The introduction of BN@CNTs causes the refinement of SiC grains,which provides plenty of interfaces and enhances the interface polarization loss.This work successfully solves the problem that PDCs pyrolyzed at elevated temperatures cannot be used as EMW absorption materials by applying BN coating on CNTs served as absorbers for PDC-SiC.The results of this work greatly broaden the application scope of the PDC systems for EMW absorption.
基金supported by the National Natural Science Foundation of China(Nos.22021001,22227802,22104125,and 92061118)the Fundamental Research Funds for the Central Universities(No.20720220018)the Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM).
文摘The metallic plasmonic array that can support both propagating surface plasmon polaritons(PSPPs)and localized surface plasmon resonance(LSPR)possesses rich optical properties and remarkable optical performance,making it a powerful platform for applications in photonics,chemistry,and materials.For practical applications,the excitation spot is usually smaller than the area of metal arrays.It is thus imperative to address“how many array units are enough?”towards a rational design of plasmonic nanostructures.Herein,we employed focused ion beam(FIB)to precisely fabricate a series of plasmonic array structures with increased unit number.By utilizing photoluminescence(PL)and surface-enhanced Raman spectroscopy(SERS),we found that the array units outside the excitation spot still have a significant impact on the optical response within the spot.Combined with the numerical simulation,we found that the boundary of the finite array leads to the loss of PSPP outside the excitation point,which subsequently affects the coupling of PSPP and LSPR in the excitation spot,leading to variations in PL and SERS intensity.Based on the findings,we further tuned the LSPR mode of the metal arrays by electrodeposition to obtain strong near-field enhancement without any influence on the PSPP mode.This work advances the understanding of near-field and far-field optical behavior in finite-size array structures and provides guidance for designing highly-efficient photonic devices.
基金supported by the Hainan Yazhou Bay Seed Lab(B21HJ0215)the Key Laboratory of Gene Editing Technologies(Hainan)of the Ministry of Agriculture and Rural Affairs,China,and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences to H.Z.and the Central Public-interest Scientific Institution Basal Research Fund(Y2022PT24)to F.Y.
文摘Dear Editor,Crop genetic diversity and elite agronomic traits are mainly caused by genetic variants,approximately half of which are single-nucleotide polymorphisms.Precise nucleotide substitution through CRISPR–Cas-mediated base editors has been widely used to correct defective alleles and create novel alleles by artificial evolution for rapid crop genetic improvement.Since 2017,cytosine base editors(CBEs)and adenine base editors(ABEs)have been successively developed in many plant species and have been continuously optimized to generate highly efficient C-to-T and A-to-G transitions,as well as by-product C-to-A/G conversion with low efficiency(Ren et al.,2018;Yan et al.,2021).
基金supported by the Chinese Academy of Sciencesthe National Key R&D Program of China+22 种基金the CAS Center for Excellence in Particle PhysicsWuyi Universitythe Tsung-Dao Lee Institute of Shanghai Jiao Tong University in Chinathe Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in Francethe Istituto Nazionale di Fisica Nucleare (INFN) in Italythe Italian-Chinese collaborative research program MAECI-NSFCthe Fond de la Recherche Scientifique (F.R.S-FNRS)FWO under the "Excellence of Science-EOS" in Belgiumthe Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazilthe Agencia Nacional de Investigacion y Desarrollo in Chilethe Charles University Research Centrethe Ministry of Education,Youth,and Sports in Czech Republicthe Deutsche Forschungsgemeinschaft (DFG)the Helmholtz Associationthe Cluster of Excellence PRISMA+ in Germanythe Joint Institute of Nuclear Research (JINR)Lomonosov Moscow State University in Russiathe joint Russian Science Foundation (RSF)National Natural Science Foundation of China (NSFC) research programthe MOST and MOE in Taiwan,Chinathe Chulalongkorn UniversitySuranaree University of Technology in Thailandthe University of California at Irvine in USA
文摘The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK^(+)mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification.Moreover,the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals.Based on these advantages,the detection efficiency for the proton decay via p→νK^(+)is 36.9%±4.9%with a background level of 0.2±0.05(syst)±0.2(stat)events after 10 years of data collection.The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 years,which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies.
基金supported by the Agricultural Science and Technology Innovation Program of The Chinese Academy of Agricultural Sciences to Huanbin ZhouOpen Project of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, to Huanbin Zhou and Dawei Zhang
文摘Gene-targeting technologies using sequence specific nucleases have been widely adopted to induce genetic modifications in both plant molecular biology research and crop improvement,of which generating targeted point mutation for gain-of-function phenotype is of great value.
基金This work was supported by grants from the National Natural Science Foundation of China(31871948)the Fundamental Research Funds,and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences to H.Z.a grant from the Fundamental Research Funds for the Central Universities to S.L.
文摘Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms containing im portant gain-of-function genetic variations.How ever,to engineer target genes with unknown functional SNPs remains challenging.To address this issue,we present here abase-e diting-mediated gene evolution(BEMGE)m ethod,employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA(sgRNA)library tiling the full-length coding region,for developing novel rice germ plasm swith mutations in any endogenous gene.To this end,OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bom bardment-mediated transform ation.Four different types of amino acid substitutions in the evolved OsALS1,derived from two sites that have never been targeted by natural or human selection during rice dom estication,were identified,conferring varying levels of tolerance to the herbicide bispyribac-sodium.Furtherm ore,the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing w ith the corresponding base editor and sgRNA.Collectively,these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.
基金National Natural Science Foundation of China (31871948)the National Key Research and Development Program of China (2017YFD0200900)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences to H.Z.
文摘CRISPR technologies enabling precise genome manipulation are valuable for gene function studies and molecular crop breeding. However, the requirement of a protospacer adjacent motif (PAM)y such as NGG and TTN, for Cas protein recognition restricts the selection of targetable genomic loci in practical applications of CRISPR technologies. Recently Cas9-NG, which recognizes a minimal NG PAM, was reported to expand the targeting space of genome editing in human cells, but it remains unclear whether this Cas9 variant can be used in plants. In this study, we evaluated the nuclease activity of Cas9-NG toward various NGN PAMs by targeting endogenous genes in transgenic rice. We found that Cas9-NG edits all NGG, NGA, NGT, and NGC sites with impaired activity, while the gene-edited plants were dominated by monoallelic mutations. Cas9-NG-engineered base editors were then developed and used to generate O s B Z R I gainof- function plants that can not be created by other available Cas9-engineered base editors. Moreover, we showed that a Cas9-NG-based transcriptional activator efficiently upregulated the expression of endogenous target genes in rice. In addition, we discovered that Cas9-NG recognizes NAC, NTG, NTT, and NCG apart from NG PAM. Together, these findings demonstrate that Cas9-NG can greatly expand the targeting scope of genome-editing tools, showing great potential for targeted genome editing, base editing, and genome regulation in plants.
基金This study was supported by grants from the National Key Research and Development Program of China (2017YFD0200900) and the Agricultural Science and Technology Innovation Program of The Chinese Academy of Agricultural Sciences to H.Z., and a grant from the National Natural Science Foundation of China (31701780) to F.Y.
文摘Dear Editor The newly developed CRISPR/Cas9-mediated base editing technology with cytosine deaminase is capable of precisely and efficiently introducing point mutations at the target genomic locus, which does not require double-stranded DNA breaks or any donor templates and thus exhibit a great potential for gene correction and genetic diversification in yeasts, plants, and mammalian and human cells (Komor et al., 2016; Nishida et al., 2016; Lu and Zhu, 2017; Ren et al., 2017).
基金the National Natural Science Foundation of China,Key Science and Technology Program of Shaanxi Province
文摘Objective: To analyze the clinical epidemiological characteristics of patients with gallbladder carcinoma recruited from 17 hospitals in five northwestern provinces of China (Shaanxi Province, Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and Xinjiang Uygur Autonomous Region) from 2009 to 2013, and to summarize the clinical diagnosis and treatment data of gallbladder carcinoma. Methods: Clinical information of 2379 patients with gallbladder carcinoma from 17 hospitals in five northwestern provinces of China was retrospectively collected and analyzed using the 'Questionnaire for Gallbladder Carcinoma Patients in Northwestern Area of China.' All information was verified with EpiData software and analyzed with SPSS 13.0 software. Results: (1) Gallbladder carcinoma accounted for 2.7% (2379/86,609) of all biliary tract diseases during the study period, which was significantly higher than that from 1986 to 1998 (P < 0.001). (2) Gallbladder carcinoma was more prone to occur in elderly women. The male:female incidence ratio was 1.0:2.1, the average age of onset of disease was 63.7 ± 11.3 years, and the incidence was higher in farmers than in other occupational groups. (3) A total of 57.2% (1360/2379) of patients with gallbladder carcinoma also had gallstones. (4) Abdominal pain (1796/2379, 75.5%) and jaundice (727/2379, 30.6%) were the most common clinical manifestations, 81.2% (1527/1881) were positive in those receiving B ultrasound examinations and 90.7% (1567/1727) were positive in those undergoing computed tomography, and 64.5% (1124/1742) of patients with gallbladder carcinoma were positive for carbohydrate antigen (CA) 19-9. (5) The pathological type of gallbladder carcinoma was mainly moderately and poorly differentiated adenocarcinoma with a high degree of malignancy. At admission, 55.1% (1091/1981) of patients had stage Ⅳ cancer among patients with TNM staging information; 55.9% (1331/2379) had lymphatic metastasis, 29.7% (706/2379) had bile duct metastasis, and 53.1% (1263/2379) had liver metastasis. (6) A total of 283 patients (283/2379, 11.9%) had incidentally detected gallbladder carcinoma. (7) The rate of radical surgical resection was 30.4% (723/2379). Conclusion: The proportion of gallbladder carcinoma in biliary tract diseases in the northwestern area of China was significantly higher from 2009 to 2013 than from 1986 to 1998. Gallbladder carcinoma was common in older women and mainly diagnosed at an advanced stage. Compared with other surveys in different regions, the rate of metastasis in this survey was high, leading to a low resection rate. Populations at high risk should undergo B-ultrasound examinations at regular follow-up intervals to increase the rate of early diagnosis of gallbladder carcinoma.