By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connection...By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connections of saturation functions by means of the so-called state-dependent saturation function is proposed for global stabilization of chains of integrators system. The state-dependent saturation function allows increasing the control energy when some of the states are badly scaled and can improve significantly the transient performances of the closed-loop system. Secondly, this type of global stabilization nonlinear feedback laws is extended to a class of linear systems that can be globally stabilized by bounded controls. Numerical examples show the effectiveness of the proposed approach.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 60904007 and 61074111the China Postdoctoral Science Foundation under Grant No.20100480059+2 种基金the Heilongjiang Postdoctoral Foundation of China under Grant No.LRB10-194the Foundation for Innovative Research Group of the National Natural Science Foundation of China under Grant No.601021002the Development Program for Outstanding Young Teachers at the Harbin Institute of Technology under Grant No. HITQNJS.2009.054
文摘By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connections of saturation functions by means of the so-called state-dependent saturation function is proposed for global stabilization of chains of integrators system. The state-dependent saturation function allows increasing the control energy when some of the states are badly scaled and can improve significantly the transient performances of the closed-loop system. Secondly, this type of global stabilization nonlinear feedback laws is extended to a class of linear systems that can be globally stabilized by bounded controls. Numerical examples show the effectiveness of the proposed approach.