Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve t...Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative examples.In this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative examples.Specifically,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster centers.Experiments clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification.展开更多
In multi-dimensional classification(MDC), the semantics of objects are characterized by multiple class spaces from different dimensions. Most MDC approaches try to explicitly model the dependencies among class spaces ...In multi-dimensional classification(MDC), the semantics of objects are characterized by multiple class spaces from different dimensions. Most MDC approaches try to explicitly model the dependencies among class spaces in output space. In contrast, the recently proposed feature augmentation strategy, which aims at manipulating feature space, has also been shown to be an effective solution for MDC. However, existing feature augmentation approaches only focus on designing holistic augmented features to be appended with the original features, while better generalization performance could be achieved by exploiting multiple kinds of augmented features.In this paper, we propose the selective feature augmentation strategy that focuses on synergizing multiple kinds of augmented features.Specifically, by assuming that only part of the augmented features is pertinent and useful for each dimension′s model induction, we derive a classification model which can fully utilize the original features while conduct feature selection for the augmented features. To validate the effectiveness of the proposed strategy, we generate three kinds of simple augmented features based on standard k NN, weighted k NN, and maximum margin techniques, respectively. Comparative studies show that the proposed strategy achieves superior performance against both state-of-the-art MDC approaches and its degenerated versions with either kind of augmented features.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62225602).
文摘Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output codes.Existing works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative examples.In this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative examples.Specifically,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster centers.Experiments clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification.
基金supported by National Science Foundation of China (No. 62176055)China University S&T Innovation Plan Guided by the Ministry of Education。
文摘In multi-dimensional classification(MDC), the semantics of objects are characterized by multiple class spaces from different dimensions. Most MDC approaches try to explicitly model the dependencies among class spaces in output space. In contrast, the recently proposed feature augmentation strategy, which aims at manipulating feature space, has also been shown to be an effective solution for MDC. However, existing feature augmentation approaches only focus on designing holistic augmented features to be appended with the original features, while better generalization performance could be achieved by exploiting multiple kinds of augmented features.In this paper, we propose the selective feature augmentation strategy that focuses on synergizing multiple kinds of augmented features.Specifically, by assuming that only part of the augmented features is pertinent and useful for each dimension′s model induction, we derive a classification model which can fully utilize the original features while conduct feature selection for the augmented features. To validate the effectiveness of the proposed strategy, we generate three kinds of simple augmented features based on standard k NN, weighted k NN, and maximum margin techniques, respectively. Comparative studies show that the proposed strategy achieves superior performance against both state-of-the-art MDC approaches and its degenerated versions with either kind of augmented features.