To measure the surface stress of thin laser cladding coatings with Rayleigh waves based on the cross correlation function, this pa- per introduced the influence of cross correlation step length on the stress measureme...To measure the surface stress of thin laser cladding coatings with Rayleigh waves based on the cross correlation function, this pa- per introduced the influence of cross correlation step length on the stress measurement. Flat-shaped specimens made of laser cladding Fe314 alloy coatings were performed by static tensile tests, and Rayleigh wave signals were collected during the test process with an ultrasonic pulser and receiver instrument combined with two Rayleigh wave transducers. The difference in time of flight between two signals was de- termined based on the cross correlation function. The microstructure was observed by scanning electronic microscopy. The influence of the stress on the propagation velocity of Rayleigh waves and the relationship between the difference in time of flight and tensile stress under dif- ferent cross correlation step lengths were analyzed. The inhomogeneous deformation of the coatings affects the relationship between the dif- ference in time of flight and tensile stress; the stress measurement of the coatings is nearly constant with the increase of cross correlation step length when it attains one cycle.展开更多
The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components...The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.展开更多
Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processi...Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.展开更多
This paper reviewed the main research work in the field of remaining life prediction of crankshaft remanufacturing core by Science and Technology on Remanu- facturing Laboratory. Based on the results of finite element...This paper reviewed the main research work in the field of remaining life prediction of crankshaft remanufacturing core by Science and Technology on Remanu- facturing Laboratory. Based on the results of finite element analysis, the R angle zone of crankshaft was determined as a major measuring position. A special measuring probe is developed, and bending fatigue bench tests were carried out to collect electromagnetic damage information during fatigue process. A neural network model was established to identify damage degree of crankshaft core, and a damage evaluation equipment for crankshaft core was developed.展开更多
After development for decades, abroad remanufacturing has formed a complete industrial system. At present, the research emphases are on marking logistics management and market cultivation theory of remanufacturing pro...After development for decades, abroad remanufacturing has formed a complete industrial system. At present, the research emphases are on marking logistics management and market cultivation theory of remanufacturing products, and so on. The Chinese remanufacturing starts fairly late. After 10 years of development, it formed a remanufacturing mode with Chinese characteristics that is sustained by high-tech industries, using the surface engineering technology to restore the size and improve properties, and combining manufacturing, study and research together. The remanufacturing mode is not only circular but also economic. With the development of science and technology, future remanufacturing technology will break the previous limits, explore and understand the limits of micro machining. It will carry out the waste product remanufacturing in the micro-nano scale, and extend the remanufacturing industry to a more broad space.展开更多
Made in China 2025 proposes that "develop the remanufacturing industry vigorously, implement highend remanufacturing, smart remanufacturing, and inservice remanufacturing, advance the identification of remanufact...Made in China 2025 proposes that "develop the remanufacturing industry vigorously, implement highend remanufacturing, smart remanufacturing, and inservice remanufacturing, advance the identification of remanufacturing products, and promote sustainable and healthy development of the manufacturing industry".Remanufacturing is an extension of the manufacturing industry chain, and it is an important part of advanced manufacturing and green manufacturing. The product function, technical performance, greenness and economy of the remanufacturing products are no worse than those of the new products. The cost of remanufacturing products is only about 50% of new products. Remanufacturing can save energy 60%, and material 70%, so the adverse impact on the environment is significantly reduced. At present,China's remanufacturing industry is developing rapidly,and the manufacturing pilot has been in full swing.Meanwhile, the policies and regulations, basic theory,key technology, and industry standards of remanufacturing have been continuously innovated and completed.展开更多
Into the 21st century, remanufacturing engineering has been accepted by more and more people in China. Remanufacturing is an industrial maintenance technology for worn or waste electro-mechanical products using advanc...Into the 21st century, remanufacturing engineering has been accepted by more and more people in China. Remanufacturing is an industrial maintenance technology for worn or waste electro-mechanical products using advanced technology, which means the high-level stage for the maintenance and surface engineering. In this paper, a new automotive high velocity arc spraying system was introduced. And three kinds of advanced amorphous and nanocrystalline metastable coatings were developed, including Fe, Ni and Al-based amorphous and nanocrystalline composite coatings. Their research development and applications were introduced. And the development trends of high velocity arc spraying system and advanced metastable surface protective coating materials on the remanu- facturing engineering were indicated.展开更多
The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma formin...The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.展开更多
Researches on self-repairing material (serpentine phyllosilicate) of our team in the past few years, such as ultrafining treatment, surface modification, self-repairing mechanism, the effect of rare metal on the sel...Researches on self-repairing material (serpentine phyllosilicate) of our team in the past few years, such as ultrafining treatment, surface modification, self-repairing mechanism, the effect of rare metal on the self-repairing performance of serpentine, were introduced summarily. The phyllosilicate of serpentine shows excellent tribologi- cal and self-repairing performance for metal worn surface as additive in lubricant.展开更多
文摘To measure the surface stress of thin laser cladding coatings with Rayleigh waves based on the cross correlation function, this pa- per introduced the influence of cross correlation step length on the stress measurement. Flat-shaped specimens made of laser cladding Fe314 alloy coatings were performed by static tensile tests, and Rayleigh wave signals were collected during the test process with an ultrasonic pulser and receiver instrument combined with two Rayleigh wave transducers. The difference in time of flight between two signals was de- termined based on the cross correlation function. The microstructure was observed by scanning electronic microscopy. The influence of the stress on the propagation velocity of Rayleigh waves and the relationship between the difference in time of flight and tensile stress under dif- ferent cross correlation step lengths were analyzed. The inhomogeneous deformation of the coatings affects the relationship between the dif- ference in time of flight and tensile stress; the stress measurement of the coatings is nearly constant with the increase of cross correlation step length when it attains one cycle.
文摘The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
基金the National Key Technologies Research and Development Program of China(Grant No.2016YFB1100200)。
文摘Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.
文摘This paper reviewed the main research work in the field of remaining life prediction of crankshaft remanufacturing core by Science and Technology on Remanu- facturing Laboratory. Based on the results of finite element analysis, the R angle zone of crankshaft was determined as a major measuring position. A special measuring probe is developed, and bending fatigue bench tests were carried out to collect electromagnetic damage information during fatigue process. A neural network model was established to identify damage degree of crankshaft core, and a damage evaluation equipment for crankshaft core was developed.
基金the financial support provided by the National Basic Research Program of China (Grant Nos. 2011CB013403, 2011CB013405, 2011CB013401)the National Natural Science Foundation of China (Grant No. 51125023)
文摘After development for decades, abroad remanufacturing has formed a complete industrial system. At present, the research emphases are on marking logistics management and market cultivation theory of remanufacturing products, and so on. The Chinese remanufacturing starts fairly late. After 10 years of development, it formed a remanufacturing mode with Chinese characteristics that is sustained by high-tech industries, using the surface engineering technology to restore the size and improve properties, and combining manufacturing, study and research together. The remanufacturing mode is not only circular but also economic. With the development of science and technology, future remanufacturing technology will break the previous limits, explore and understand the limits of micro machining. It will carry out the waste product remanufacturing in the micro-nano scale, and extend the remanufacturing industry to a more broad space.
文摘Made in China 2025 proposes that "develop the remanufacturing industry vigorously, implement highend remanufacturing, smart remanufacturing, and inservice remanufacturing, advance the identification of remanufacturing products, and promote sustainable and healthy development of the manufacturing industry".Remanufacturing is an extension of the manufacturing industry chain, and it is an important part of advanced manufacturing and green manufacturing. The product function, technical performance, greenness and economy of the remanufacturing products are no worse than those of the new products. The cost of remanufacturing products is only about 50% of new products. Remanufacturing can save energy 60%, and material 70%, so the adverse impact on the environment is significantly reduced. At present,China's remanufacturing industry is developing rapidly,and the manufacturing pilot has been in full swing.Meanwhile, the policies and regulations, basic theory,key technology, and industry standards of remanufacturing have been continuously innovated and completed.
文摘Into the 21st century, remanufacturing engineering has been accepted by more and more people in China. Remanufacturing is an industrial maintenance technology for worn or waste electro-mechanical products using advanced technology, which means the high-level stage for the maintenance and surface engineering. In this paper, a new automotive high velocity arc spraying system was introduced. And three kinds of advanced amorphous and nanocrystalline metastable coatings were developed, including Fe, Ni and Al-based amorphous and nanocrystalline composite coatings. Their research development and applications were introduced. And the development trends of high velocity arc spraying system and advanced metastable surface protective coating materials on the remanu- facturing engineering were indicated.
文摘The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.
基金financially supported by the National Key Basic Research Program of China (973) (Grant No. 2011CB013405)Young Scientist Fund of NSFC (Grant Nos. 50904072, 50805146)+1 种基金China Postdoctoral Science Foundation (Grant Nos. 20090461452)China Postdoctoral Science Special Foundation (Grant No. 201003796).
文摘Researches on self-repairing material (serpentine phyllosilicate) of our team in the past few years, such as ultrafining treatment, surface modification, self-repairing mechanism, the effect of rare metal on the self-repairing performance of serpentine, were introduced summarily. The phyllosilicate of serpentine shows excellent tribologi- cal and self-repairing performance for metal worn surface as additive in lubricant.