Effect of Fe nutrition on Fe acquisition, aconitase enzyme activity and assimilation of the element in ferritin protein was studied in two indica rice cultivars viz. Sharbati and Lalat having contrasting grain Fe conc...Effect of Fe nutrition on Fe acquisition, aconitase enzyme activity and assimilation of the element in ferritin protein was studied in two indica rice cultivars viz. Sharbati and Lalat having contrasting grain Fe concentration. Young rice seedlings were grown in hydroponics with different levels of Fe. For comparison, the two cultivars were also grown in the field under natural conditions of rice culture. Iron accumulation, aconitase activity and ferritin level were higher in the high Fe containing cultivar, Sharbati than that in the low Fe containing cultivar, Lalat. While aconitase activity increased consistently with the increase in concentration of Fe in the growing medium, the same was not found to be true for accumulation of ferritin protein. The leaf ferritin level increased up to a certain level of Fe in the growing medium and declined thereafter. Levels of Fe in the growing medium giving maximum ferritin synthesis were found to be different in the two rice cultivars. In both cultivars, aconitase activity attained maximum level after 20 days of panicle emergence (heading). Pattern of Fe accumulation in the leaves in response to increasing Fe level in the nutrient solution paralleled with that of the aconitase activity indicating a positive correlation. It was concluded that accumulation of both ferritin protein and aconitase enzyme were influenced not only by the Fe level in the growing medium but also by the internal Fe concentration of the two cultivars.展开更多
文摘Effect of Fe nutrition on Fe acquisition, aconitase enzyme activity and assimilation of the element in ferritin protein was studied in two indica rice cultivars viz. Sharbati and Lalat having contrasting grain Fe concentration. Young rice seedlings were grown in hydroponics with different levels of Fe. For comparison, the two cultivars were also grown in the field under natural conditions of rice culture. Iron accumulation, aconitase activity and ferritin level were higher in the high Fe containing cultivar, Sharbati than that in the low Fe containing cultivar, Lalat. While aconitase activity increased consistently with the increase in concentration of Fe in the growing medium, the same was not found to be true for accumulation of ferritin protein. The leaf ferritin level increased up to a certain level of Fe in the growing medium and declined thereafter. Levels of Fe in the growing medium giving maximum ferritin synthesis were found to be different in the two rice cultivars. In both cultivars, aconitase activity attained maximum level after 20 days of panicle emergence (heading). Pattern of Fe accumulation in the leaves in response to increasing Fe level in the nutrient solution paralleled with that of the aconitase activity indicating a positive correlation. It was concluded that accumulation of both ferritin protein and aconitase enzyme were influenced not only by the Fe level in the growing medium but also by the internal Fe concentration of the two cultivars.