Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capaci...Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application.Herein,a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the electrochemical performance is improved.The modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of~233 m Ah/g at0.1 C and 174 m Ah/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45℃,and it also exhibits an enhanced rate capability with 118 m Ah/g at 5 C.The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.展开更多
One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which mak...One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which makes this class of cathode less practical.Herein,we compared the effect of single and dual ions on electrochemical performance of high nickel(LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),NMC)cathode material in different temperatures and voltage ranges.The addition of a few amounts of tantalum(0.2 wt%)and boron(0.05 wt%)lead to improved electrochemical performance.The co-modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of 234.9 m Ah/g at 0.1 C and retained 208 m Ah/g at 1 C after 100 cycles at 45℃,which corresponds to a capacity retention of 88.5%,compared to the initial discharge capacity of234.1 m Ah/g and retained capacity of 200.5 m Ah/g(85.6%).The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.展开更多
The Panda X-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in...The Panda X-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1-10 keV electron equivalent energy, the total electron recoil background is found to be 4.9 × 10^(-5) kg^(-1) d^(-1) keV^(-1). The nuclear recoil background in the same region is 2.8 × 10^(-7) kg^(-1) d^(-1) keV^(-1). With an exposure of 5.6 ton-years, the sensitivity of Panda X-4 T could reach a minimum spin-independent dark matter-nucleon cross section of 6 × 10^(-48) cm^2 at a dark matter mass of 40 Ge V/c^2.展开更多
Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte...Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte on both sides of electrolytic tank and conducts H+.The AIEM with cation and anion groups possesses excellent performances,such as high ion conductivity(σ),low vanadium ion permeability(Pvn+),relative stability and low cost.However,the performance of AIEM directly depends on the chemical structure of polymers.In addition to ensuring foundational physical performance,ion selectivity of AIEM is significant since the crossover of vanadium ion with various valences may reduce the battery capacity.In this paper,AIEMs for VRB and their chemical structures as well as synthesis approaches to realize all kinds of high-performing AIEMs are reviewed.The current trend and future direction of prospective materials for the VRB separators are documented in detail as well.展开更多
Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction.In this work,three dif...Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction.In this work,three different typical MXene electrodes,i.e.,Nb_(2)C,Ti_(2)C,and Ti_(3)C_(2) were individually investigated upon their electrochemical behaviors for potassium-ion(K-ion)storage.All these MXene materials exhibited pseudocapacitive-dominated behaviors,fast kinetics,and durable K-ion storage,delivering superior performance compared with other K-ion host materials.According to the experimental results,it could be ascribed to the intrinsically large interlayer distance for K-ion transport and the superb structural stability of MXene even subjected to long-term potassiation/depotassiation process.展开更多
Tungsten carbide(WC)-based materials are widely considered as the hydrogen evolution reaction(HER)process catalysts due to their“Pt-like”electronic structure.Nonetheless,traditional powder electrodes have a high cos...Tungsten carbide(WC)-based materials are widely considered as the hydrogen evolution reaction(HER)process catalysts due to their“Pt-like”electronic structure.Nonetheless,traditional powder electrodes have a high cost,and display problems related to the process itself and the poor stability over operation time.This paper presented a self-supported asymmetric porous ceramic electrode with WO_(3-x)whiskers formed in situ on the walls of the finger-like holes and membrane surface,which was prepared by combining phase inversion tape-casting,pressureless sintering,and thermal treatment in a CO_(2) atmosphere.The optimized ceramic electrode displayed good catalytic HER activity and outstanding stability at high current densities.More specifically,it demonstrated the lowest overpotentials of 107 and 123 mV and the lowest Tafel slopes of 59.3 and 72.4 mV·dec^(-1)at 10 mA·cm^(-2)in acidic and alkaline media,respectively.This superior performance was ascribed to the structure of the ceramic membrane and the charge transfer efficiency,which was favored by the in situ developed WC/WO_(3-x)heterostructure and the oxygen vacancies.展开更多
In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic co...In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use tvpe associated with these sites, substantial amounts of contaminated soils now require remediation. "Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of .cost-effective methods for land reclamation.Mechanical soil aeration is a simple, effective, and low-cost soil remediation tectm^que mat is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects.This study reviews current engineei-ing practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of costeffective hazardous waste site soil remediation programs.展开更多
基金Project supported by the Key Laboratory Fund(Grant No.6142804200303)from Science and Technology on Microsystem Laboratorythe Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1(Grant No.ZDBS-LY-JSC010)+2 种基金the Key Research and Development Project of the Department of Science and Technology of Jiangsu Province,China(Grant No.BE2020003)the Beijing Municipal Science and Technology Commission(Grant No.Z191100004719001)the National Key Research and Development Program of China(Grant No.2017YFB0405400)。
文摘Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application.Herein,a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the electrochemical performance is improved.The modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of~233 m Ah/g at0.1 C and 174 m Ah/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45℃,and it also exhibits an enhanced rate capability with 118 m Ah/g at 5 C.The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.
基金the Key Laboratory Fund(Grant No.6142804200303)from Science and Technology on Microsystem Laboratorythe Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1(Grant No.ZDBS-LY-JSC010)Beijing Municipal Science&Technology Commission(Grant No.Z191100004719001)。
文摘One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which makes this class of cathode less practical.Herein,we compared the effect of single and dual ions on electrochemical performance of high nickel(LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),NMC)cathode material in different temperatures and voltage ranges.The addition of a few amounts of tantalum(0.2 wt%)and boron(0.05 wt%)lead to improved electrochemical performance.The co-modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of 234.9 m Ah/g at 0.1 C and retained 208 m Ah/g at 1 C after 100 cycles at 45℃,which corresponds to a capacity retention of 88.5%,compared to the initial discharge capacity of234.1 m Ah/g and retained capacity of 200.5 m Ah/g(85.6%).The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.
基金supported by the National Key R&D Program of China(2019YFA0705104)partially sponsored by the General Research Fund under Project City U 11212920 and COCHE。
基金supported by a 985-Ⅲ grant from Shanghai Jiao Tong University,the National Natural Science Foundation of China(Grant Nos.11435008,11455001,11505112,11525522,11775141,and 11755001)the Ministry of Science and Technology of China(Grant No.2016YFA0400301)+2 种基金the Office of Science and Technology,Shanghai Municipal Government(Grant Nos.11DZ2260700,and 16DZ2260200)the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Educationsupported in part by the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)and Hongwen Foundation in Hong Kong
文摘The Panda X-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1-10 keV electron equivalent energy, the total electron recoil background is found to be 4.9 × 10^(-5) kg^(-1) d^(-1) keV^(-1). The nuclear recoil background in the same region is 2.8 × 10^(-7) kg^(-1) d^(-1) keV^(-1). With an exposure of 5.6 ton-years, the sensitivity of Panda X-4 T could reach a minimum spin-independent dark matter-nucleon cross section of 6 × 10^(-48) cm^2 at a dark matter mass of 40 Ge V/c^2.
基金the National Natural Science Foundation of China(Nos.51503187,21504037 and 51603194)the National key R&D Project(No.2016YFE0102700)+3 种基金the Shanxi provincial foundation for science and technology research(Nos.201601D021058,201701D221050,20181101006,20181102019)Partial support is also from the NIMHD-RCMI grant number 5G12MD007595 from the National Institute of Minority HealthHealth Disparities and the NIGMS-BUILD(No.8UL1GM118967)National Science Foundation(No.1700429)。
文摘Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte on both sides of electrolytic tank and conducts H+.The AIEM with cation and anion groups possesses excellent performances,such as high ion conductivity(σ),low vanadium ion permeability(Pvn+),relative stability and low cost.However,the performance of AIEM directly depends on the chemical structure of polymers.In addition to ensuring foundational physical performance,ion selectivity of AIEM is significant since the crossover of vanadium ion with various valences may reduce the battery capacity.In this paper,AIEMs for VRB and their chemical structures as well as synthesis approaches to realize all kinds of high-performing AIEMs are reviewed.The current trend and future direction of prospective materials for the VRB separators are documented in detail as well.
基金This research was supported by GRF under Project N_CityU11305218The work was also partially sponsored by the Science Technology and Innovation Committee of Shenzhen Municipality(No.JCYJ20170818103435068)a Grant from City University of Hong Kong(No.9667165).
文摘Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction.In this work,three different typical MXene electrodes,i.e.,Nb_(2)C,Ti_(2)C,and Ti_(3)C_(2) were individually investigated upon their electrochemical behaviors for potassium-ion(K-ion)storage.All these MXene materials exhibited pseudocapacitive-dominated behaviors,fast kinetics,and durable K-ion storage,delivering superior performance compared with other K-ion host materials.According to the experimental results,it could be ascribed to the intrinsically large interlayer distance for K-ion transport and the superb structural stability of MXene even subjected to long-term potassiation/depotassiation process.
基金This research was supported by the National Natural Science Foundation of China(U1732115)the China National Petroleum Corporation(KD200121)+1 种基金the Science and Technology Department of Henan Province(222102230054)the Henan Province Education Department of Key Scientific Research Project in Colleges and Universities(21B430012).
文摘Tungsten carbide(WC)-based materials are widely considered as the hydrogen evolution reaction(HER)process catalysts due to their“Pt-like”electronic structure.Nonetheless,traditional powder electrodes have a high cost,and display problems related to the process itself and the poor stability over operation time.This paper presented a self-supported asymmetric porous ceramic electrode with WO_(3-x)whiskers formed in situ on the walls of the finger-like holes and membrane surface,which was prepared by combining phase inversion tape-casting,pressureless sintering,and thermal treatment in a CO_(2) atmosphere.The optimized ceramic electrode displayed good catalytic HER activity and outstanding stability at high current densities.More specifically,it demonstrated the lowest overpotentials of 107 and 123 mV and the lowest Tafel slopes of 59.3 and 72.4 mV·dec^(-1)at 10 mA·cm^(-2)in acidic and alkaline media,respectively.This superior performance was ascribed to the structure of the ceramic membrane and the charge transfer efficiency,which was favored by the in situ developed WC/WO_(3-x)heterostructure and the oxygen vacancies.
文摘In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use tvpe associated with these sites, substantial amounts of contaminated soils now require remediation. "Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of .cost-effective methods for land reclamation.Mechanical soil aeration is a simple, effective, and low-cost soil remediation tectm^que mat is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects.This study reviews current engineei-ing practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of costeffective hazardous waste site soil remediation programs.