期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Unlocking single-atom catalysts via amorphous substrates
1
作者 Bohua Sun Mingyuan Xu +5 位作者 Xiaoxia Li Baohong Zhang Rui Hao Xiaoyu Fan binbin jia Dingshun She 《Nano Research》 SCIE EI CSCD 2024年第5期3533-3546,共14页
Single-atom catalysts(SACs)reveal great potential for application in catalysis due to their fully exposed active sites.In general,single atoms(SAs)and the coordination substrates need to have strong interactions or ch... Single-atom catalysts(SACs)reveal great potential for application in catalysis due to their fully exposed active sites.In general,single atoms(SAs)and the coordination substrates need to have strong interactions or charge transfer to ensure the atomic dispersion,which requires the selection of a suitable substrate to stabilize the target atoms.Recent studies have demonstrated that amorphous materials with abundant defects and coordinatively unsaturated sites can be used as substrates for more efficient capturing SAs,further enhancing the catalytic performance.In this review,we discuss recent research progress of SAs loaded on amorphous substrates for enhanced catalytic activity.Firstly,we summarize the commonly used amorphous substrates for stabilizing SAs.Subsequently,we present several advanced applications of amorphous SACs in the field of catalysis,including electrocatalysis and photocatalysis.And then,we also clarify the synergistic mechanism between SAs and amorphous substrate on catalytic process.Finally,we summarize the challenges with our personal views and provide a critical outlook on how amorphous SACs continue to evolve. 展开更多
关键词 single-atoms amorphous substrate synthetic strategy CATALYSIS
原文传递
Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion 被引量:2
2
作者 Baohong Zhang Yanhong Li +3 位作者 Haoze Bai binbin jia Di Liu Lidong Li 《Nano Research》 SCIE EI CSCD 2023年第7期10597-10616,共20页
The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance.Three-dimensional(3D)self-supported a... The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance.Three-dimensional(3D)self-supported amorphous nanomaterials have attracted great enthusiasm as the cornerstone for building high-performance nanodevices.In particular,tremendous efforts have been devoted to the design,fabrication,and evaluation of self-supported amorphous nanomaterials as electrodes for energy storage and conversion devices in the past decade.However,the electrochemical performance of devices assembled with 3D self-supported amorphous nanomaterials still remains to be dramatically promoted to satisfy the demands for more practical applications.In this review,we aim to outline the achievements made in recent years in the development of 3D self-supported amorphous nanomaterials for a broad range of energy storage and conversion processes.We firstly summarize different synthetic strategies employed to synthesize 3D nanomaterials and to tailor their composition,morphology,and structure.Then,the performance of these 3D self-supported amorphous nanomaterials in their corresponding energy-related reactions is highlighted.Finally,we draw out our comprehensive understanding towards both challenges and prospects of this promising field,where valuable guidance and inspiration will surely facilitate further development of 3D self-supported amorphous nanomaterials,thus enabling more highly efficient energy storage and conversion devices that play a key role in embracing a sustainable energy future. 展开更多
关键词 three-dimensional(3D)self-supported amorphous nanomaterials synthetic strategy energy storage energy conversion
原文传递
Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO_(2)reduction 被引量:2
3
作者 Ming Qu Zhe Chen +11 位作者 Zhiyi Sun Danni Zhou Wenjing Xu Hao Tang Hongfei Gu Tuo Liang Pengfei Hu Guangwen Li Yu Wang Zhuo Chen Tao Wang binbin jia 《Nano Research》 SCIE EI CSCD 2023年第2期2170-2176,共7页
The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(... The atomic-level interfacial regulation of single metal sites through heteroatom doping can significantly improve the characteristics of the catalyst and obtain surprising activity.Herein,nickel single-site catalysts(SSCs)with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed(denoted as Ni-PxNy,x=1,2 and y=3,2).In CO_(2)reduction reaction(CO_(2)RR),the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification.Besides,Ni-P1N3 performed the highest CO Faradaic efficiency(FECO)of 85.0%–98.0%over a wide potential range of−0.65 to−0.95 V(vs.the reversible hydrogen electrode(RHE)).Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO_(2)intermediate adsorption/desorption,thereby accelerating the reaction kinetics and boosting CO_(2)RR activity.This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance,targetting to CO_(2)RR applications. 展开更多
关键词 nickel single-site catalysts asymmetric coordination CO_(2)reduction reaction atomic interface
原文传递
Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes 被引量:2
4
作者 binbin jia Baohong Zhang +3 位作者 Zhi Cai Xiuyi Yang Lidong Li Lin Guo 《eScience》 2023年第2期60-76,共17页
Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomater... Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomaterials can further enhance electrochemical performance.To date,various feasible strategies have been proposed,of which amorphous/crystalline(a-c)heterointerface engineering is deemed an effective approach to break through the inherent activity limitations of electrode materials.The following review discusses recent research progress on a-c heterointerfaces for enhanced electrochemical processes.The general strategies for synthesizing ac heterojunctions are first summarized.Subsequently,we highlight various advanced applications of a-c heterointerfaces in the field of electrochemistry,including for supercapacitors,batteries,and electrocatalysts.We also elucidate the synergistic mechanism of the crystalline phase and amorphous phase for electrochemical processes.Lastly,we summarize the challenges,present our personal opinions,and offer a critical perspective on the further development of a-c nanomaterials. 展开更多
关键词 NANOCOMPOSITES Amorphous/crystalline heterogeneous interfaces Synthetic strategy Electrochemical process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部