期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells 被引量:11
1
作者 Hongliang Fang bing ang +7 位作者 Xinyun Xu Xiaohui Huang Yanfeng Wu Yanping Sun Wenying Wang Nan Li Xuetao Cao Tao Wan 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2014年第2期150-159,共10页
The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design ... The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-lp, TNF-a, MIP-la, MIP-lp, RANTES and IP-IO production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-y-producing Thl response both in vitroand in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-y-producing Thl response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs viaTLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs. 展开更多
关键词 DAMPS dendritic cells chemotherapy IMMUNOTHERAPY TLR4
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部