期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus 被引量:1
1
作者 Bai Hui Chen Joon Ha Park +12 位作者 Jeong Hwi Cho In Hye Kim Bich Na Shin Ji Hyeon Ahn Seok Joon Hwang bing chun yan Hyun Jin Tae Jae Chul Lee Eun Joo Bae Yun Lyul Lee Jong Dai Kim Moo-Ho Won Il Jun Kang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期271-276,共6页
Oenanthe javanica is an aquatic perennial herb that belongs to theOenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glu-tamate-induced neurotoxicity.... Oenanthe javanica is an aquatic perennial herb that belongs to theOenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glu-tamate-induced neurotoxicity. However, few studies regarding effects ofOenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract ofOenanthe javanica on cell proliferation and neu-roblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation) and doublecortin (a marker for neuroblast). Our results showed thatOenanthe javanica extract signiifcantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was signiifcantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not ifnd that vascular endothelial growth factor expression was increased in theOenanthe javanica extract-treated group compared with the control group. These results indicate thatOenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-de-rived neurotrophic factor immunoreactivity in the rat dentate gyrus. 展开更多
关键词 nerve regeneration Oenanthe javanica extract cell proliferation neuroblast differentiation brain-derived neurotrophic factor vascular endothelial growth factor rat neural regeneration
下载PDF
Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia 被引量:1
2
作者 In Hye Kim Yong Hwan Jeon +10 位作者 Tae-Kyeong Lee Jeong Hwi Cho Jae-Chul Lee Joon Ha Park Ji Hyeon Ahn Bich-Na Shin yang Hee Kim Seongkweon Hong bing chun yan Moo-Ho Won Yun Lyul Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第6期918-924,共7页
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the n... Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning(2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult(5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28 k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity. 展开更多
关键词 hippocampal subsequent minute pyramidal maintaining attenuated hippocampus neuronal occlusion fatal
下载PDF
Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death
3
作者 bing chun yan Joon Ha Park +9 位作者 Bai Hui Chen Jeong-Hwi Cho In Hye Kim Ji Hyeon Ahn Jae-Chul Lee In Koo Hwang Jun Hwi Cho Yun Lyul Lee Il-Jun Kang Moo-Ho Won 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1731-1739,共9页
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the ad... Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperito- neal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-]ade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-im- munoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death. 展开更多
关键词 nerve regeneration NEUROGENESIS SCOPOLAMINE dentate gyrus cell proliferation neuroblastdifferentiation neuroblast migration granule cell layer neural regeneration
下载PDF
Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus
4
作者 Eun Joo Bae Bai Hui Chen +12 位作者 bing chun yan Bich Na Shin Jeong Hwi Cho In Hye Kim Ji Hyeon Ahn Jae Chul Lee Hyun-Jin Tae Seongkweon Hong Dong Won Kim Jun Hwi Cho Yun Lyul Lee Moo-Ho Won Joon Ha Park 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期944-950,共7页
The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not bee... The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1-3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group, p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. 展开更多
关键词 p53 tumor suppressor gene family cerebral ischemia/reperfusion pyramidal neurons CA1 region delayed neuronal death immunohistochemistry western blotting neural regeneration
下载PDF
Hippophae rhamnoides L.leaves extract enhances cell proliferation and neuroblast differentiation through upregulation of intrinsic factors in the dentate gyrus of the aged gerbil 被引量:1
5
作者 Ji Hyeon Ahn Bai Hui Chen +11 位作者 Joon Ha Park In Hye Kim Jeong-Hwi Cho Jae-Chul Lee bing chun yan Jung Hoon Choi In Koo Hwang Ju-Hee Park Sang-No Han Yun Lyul Lee Myong Jo Kim Moo-Ho Won 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第23期4006-4011,共6页
Background Hippophae rhamnoides L.(HL) exerts antioxidant activities against various oxidative stress conditions.In this study,we investigated effects of extract from HL leaves (HLE) on cell proliferation and neur... Background Hippophae rhamnoides L.(HL) exerts antioxidant activities against various oxidative stress conditions.In this study,we investigated effects of extract from HL leaves (HLE) on cell proliferation and neuroblast differentiation in the subgranular zone (SGZ) of the dentate gyrus (DG) of aged gerbils.Methods Aged gerbils (24 months) were divided into vehicle (saline)-treated-and HLE-treated-groups.The vehicle and HLE were orally administered with 200 mg/kg once a day for 20 days before sacrifice.Cell proliferation and neurobiast differentiation were examined in the DG using Ki67 and doublecortin (DCX),respectively.We also observed changes in immunoreactivities of superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2),brain-derived neurotrophic factor (BDNF),and phospho-glycogen synthase kinase-3-beta (p-GSK-3β) to examine their relation with neurogenesis using immunohistochemistry.Results The administration of HLE significantly increased the number of Ki67-positive cells and DCX-positive neuroblasts with well-developed processes in the SGZ of the DG of the HLE-treated-group.In addition,immunoreactivities of SOD1,SOD2,BDNF,and p-GSK-3β were significantly increased in granule and polymorphic cells of the DG in the HLE-treated-group compared with those in the vehicle-treated-group.Conclusions HLE treatment significantly increased cell proliferation and neuroblast differentiation,showing that immunoreactivities of SOD1,SOD2,BDNF,and p-GSK-3β were significantly increased in the DG.These indicate that increased neuroblast differentiation neurogenesis may be closely related to upregulation of SOD1,SOD2,BDNF,and p-GSK-3β in aged gerbils. 展开更多
关键词 aging ANTIOXIDANTS dentate gyrus hippophae rhamnoides extract NEUROGENESIS neurotrophic factors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部