Wave slamming is an important phenomenon due to its destructive power,and with the rapid development of offshore wind turbines,wave slamming on vertical cylinders has garnered lots of attention.However,the phenomenon ...Wave slamming is an important phenomenon due to its destructive power,and with the rapid development of offshore wind turbines,wave slamming on vertical cylinders has garnered lots of attention.However,the phenomenon of wave slamming on vertical cylinders is very complicated due to both the intrinsic complexity of breaking waves and that of slamming forces.The objective of this paper is to provide a general review of research related to this problem,including theoretical methods,experimental studies,numerical simulations,and full-scale measurements.Based on these approaches,the momentum theory/pressure impulse theory,spatial distribution characteristics of impacts to various breaking waves,wave generation methods,analysis methods for measured forces under structure response,scale effects in experiments,and in-situ measurements have been introduced and discussed.Results show that simplifications in existing models for wave impacting such as wave characteristics and structural response reduce its applicability and should be studied further both in theoretical,experimental and numerical researches.展开更多
In this paper,the interactions between extreme waves and a vertical cylinder are investigated through a 3-D two-phase flow model.The numerical model is verified and validated by experimental data.Then,two factors are ...In this paper,the interactions between extreme waves and a vertical cylinder are investigated through a 3-D two-phase flow model.The numerical model is verified and validated by experimental data.Then,two factors are considered,the global wave steepness and the frequency bandwidth of the wave groups,in the studies of the in-line wave forces and the wave run-up around a cylinder.It is found that both the in-line wave forces and the wave run-up are remarkably increased with the increase of the global wave steepness,whereas the effect of the frequency bandwidth on the in-line wave forces is relatively weak in comparison with its effect on the wave run-up.The minimum and maximum wave run-ups are located in the directions of 22.5°and 180°with respect to the direction of the incident waves,respectively.Additionally,a new empirical formula is proposed for predicting the in-line wave forces by using only the free surface elevations around the cylinder.The results of the formula agree well with the simulation results.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51720105010,51979029)the Major Scientific and Technological Project of CNOOC(KJGG2022-0202)Innovative Research Foundation of Ship General Performance(Grant No.31422119).
文摘Wave slamming is an important phenomenon due to its destructive power,and with the rapid development of offshore wind turbines,wave slamming on vertical cylinders has garnered lots of attention.However,the phenomenon of wave slamming on vertical cylinders is very complicated due to both the intrinsic complexity of breaking waves and that of slamming forces.The objective of this paper is to provide a general review of research related to this problem,including theoretical methods,experimental studies,numerical simulations,and full-scale measurements.Based on these approaches,the momentum theory/pressure impulse theory,spatial distribution characteristics of impacts to various breaking waves,wave generation methods,analysis methods for measured forces under structure response,scale effects in experiments,and in-situ measurements have been introduced and discussed.Results show that simplifications in existing models for wave impacting such as wave characteristics and structural response reduce its applicability and should be studied further both in theoretical,experimental and numerical researches.
基金supported by the National Key Research and Development Program of China(Grant No.2017 YFC1404200)the National Nature Science Foundation of China(Grant Nos.51679031,51720105010 and 51979029)the Liaoning Revitalization Talents Program(Grant No.XLYC1807010).
文摘In this paper,the interactions between extreme waves and a vertical cylinder are investigated through a 3-D two-phase flow model.The numerical model is verified and validated by experimental data.Then,two factors are considered,the global wave steepness and the frequency bandwidth of the wave groups,in the studies of the in-line wave forces and the wave run-up around a cylinder.It is found that both the in-line wave forces and the wave run-up are remarkably increased with the increase of the global wave steepness,whereas the effect of the frequency bandwidth on the in-line wave forces is relatively weak in comparison with its effect on the wave run-up.The minimum and maximum wave run-ups are located in the directions of 22.5°and 180°with respect to the direction of the incident waves,respectively.Additionally,a new empirical formula is proposed for predicting the in-line wave forces by using only the free surface elevations around the cylinder.The results of the formula agree well with the simulation results.