As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security is...As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security issue for WSNs. Wormhole attack is difficult to detect and prevent,as it can work without compromising sensor nodes or breaching the encryption key. We present a wormhole attack detection approach based on the probability distribution of the neighboring-node-number,WAPN,which helps the sensor nodes to judge distributively whether a wormhole attack is taking place and whether they are in the in-fluencing area of the attack. WAPN can be easily implemented in resource-constrained WSNs without any additional requirements,such as node localization,tight synchronization,or directional antennas. WAPN uses the neighboring-node-number as the judging criterion,since a wormhole usually results in a significant increase of the neighboring-node-number due to the extra attacking link. Firstly,we model the distribution of the neighboring-node-number in the form of a Bernoulli distribution. Then the model is simplified to meet the sensor nodes' constraints in computing and memory capacity. Finally,we propose a simple method to obtain the threshold number,which is used to detect the existence of a wormhole. Simulation results show that WAPN is effective under the conditions of different network topologies and wormhole parameters.展开更多
文摘As the applications of wireless sensor networks(WSNs) diversify,providing secure communication is emerging as a critical requirement. In this paper,we investigate the detection of wormhole attack,a serious security issue for WSNs. Wormhole attack is difficult to detect and prevent,as it can work without compromising sensor nodes or breaching the encryption key. We present a wormhole attack detection approach based on the probability distribution of the neighboring-node-number,WAPN,which helps the sensor nodes to judge distributively whether a wormhole attack is taking place and whether they are in the in-fluencing area of the attack. WAPN can be easily implemented in resource-constrained WSNs without any additional requirements,such as node localization,tight synchronization,or directional antennas. WAPN uses the neighboring-node-number as the judging criterion,since a wormhole usually results in a significant increase of the neighboring-node-number due to the extra attacking link. Firstly,we model the distribution of the neighboring-node-number in the form of a Bernoulli distribution. Then the model is simplified to meet the sensor nodes' constraints in computing and memory capacity. Finally,we propose a simple method to obtain the threshold number,which is used to detect the existence of a wormhole. Simulation results show that WAPN is effective under the conditions of different network topologies and wormhole parameters.