In this paper,we present a 3D printed tumor spheroidal model suitable for drug discovery.This model is based on a hydroxyethyl cellulose/alginate/gelatin(HCSG)composite biomaterial that has three distinct properties:(...In this paper,we present a 3D printed tumor spheroidal model suitable for drug discovery.This model is based on a hydroxyethyl cellulose/alginate/gelatin(HCSG)composite biomaterial that has three distinct properties:(1)the HCSG is similar to the commercial basement membrane extract in Ki67,MUC1,and PARP1 expressions of MCF-7 cells for embedding culture;(2)the HCSG is printable at room temperature;and(3)the HCSG can be large-scale manufactured at an ultralow cost.We printed a 3D MCF-7 spheroid model with HCSG and characterized it in terms of cell viability,spheroid size,key protein expression,and mitochondrial metabolic activity.We used the 3D MCF-7 spheroid model to evaluate the anti-breast cancer activity of 13 amino acid-based flavone phosphoramidates and found that the alanine structure induced a stronger drug resistance,whereas phenylalanine hardly caused drug resistance in the MCF-7 cells.This is the first time that 3D bioprinting technology has been used in a structure–activity relationship study.展开更多
Extracellular vesicles(EVs)are membrane vesicles secreted by cells,playing critical roles in mediating intercellular communications for various physiological and pathological processes.Most of the EV analysis is curre...Extracellular vesicles(EVs)are membrane vesicles secreted by cells,playing critical roles in mediating intercellular communications for various physiological and pathological processes.Most of the EV analysis is currently performed at the bulk level,obscuring the origin of the EVs and diverse characteristics of the individual extracellular vesicle.Technologies to analyze the extracellular vesicles at the single-cell and single-vesicle levels are needed to evaluate EV comprehensively and decode the heterogeneity underlying EV secretion.Microfluidic platforms that could control and manipulate fluids at the microscale provide an efficient way to achieve the aims.Various microfluidics-based technologies are emerging to realize single-cell EV secretion analysis and single EV analysis,which would be summarized in this mini-review.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.21675017)State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products(KF20190108)the National Key Research and Development Program of China(No.2017YFC1702001).And we thanked Prof.Yueqing Li for the synthesis of the isoflavone derivatives and useful discussions。
文摘In this paper,we present a 3D printed tumor spheroidal model suitable for drug discovery.This model is based on a hydroxyethyl cellulose/alginate/gelatin(HCSG)composite biomaterial that has three distinct properties:(1)the HCSG is similar to the commercial basement membrane extract in Ki67,MUC1,and PARP1 expressions of MCF-7 cells for embedding culture;(2)the HCSG is printable at room temperature;and(3)the HCSG can be large-scale manufactured at an ultralow cost.We printed a 3D MCF-7 spheroid model with HCSG and characterized it in terms of cell viability,spheroid size,key protein expression,and mitochondrial metabolic activity.We used the 3D MCF-7 spheroid model to evaluate the anti-breast cancer activity of 13 amino acid-based flavone phosphoramidates and found that the alanine structure induced a stronger drug resistance,whereas phenylalanine hardly caused drug resistance in the MCF-7 cells.This is the first time that 3D bioprinting technology has been used in a structure–activity relationship study.
基金the National Natural Science Foundation of China(Nos.21874133,31927802)Youth Innovation Promotion Association CAS(No.2018217)funds from the Dalian Institute of Chemical Physics,CAS(No.I201908)。
文摘Extracellular vesicles(EVs)are membrane vesicles secreted by cells,playing critical roles in mediating intercellular communications for various physiological and pathological processes.Most of the EV analysis is currently performed at the bulk level,obscuring the origin of the EVs and diverse characteristics of the individual extracellular vesicle.Technologies to analyze the extracellular vesicles at the single-cell and single-vesicle levels are needed to evaluate EV comprehensively and decode the heterogeneity underlying EV secretion.Microfluidic platforms that could control and manipulate fluids at the microscale provide an efficient way to achieve the aims.Various microfluidics-based technologies are emerging to realize single-cell EV secretion analysis and single EV analysis,which would be summarized in this mini-review.